STAT 2507A – Week 2 - May 20

STAT 2507A – Week 2 - May 20 - STAT2507AWeek2...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
1 STAT 2507A – Week 2 –  May 20 Jerry Situ 4.1-4.5  Summery 2009
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Exercise from last week (1) 1) Income distribution is known to be right skewed. Which of the following  is true: a) Mean > Median > Mode b) Mode > Median > Mean c) Mean = Median = Mode 2) A sample of 6 persons is taken from the Canadian population. The age  of the people in the sample are: 23, 15, 99, 17, 4, 16. What is the  standard deviation. a) 32; b) 35; c) 1214 What is the median? a) 16; b) 16.5; c) 17 2
Background image of page 2
Exercise from last week (2) 3) In community XYZ, houses have an average value of $200,000 with a  standard deviation $50,000. What proportion of houses exceed  $300,000? a) 2.5% b) 5% c) 95% d) At most 25% 4) Which measure of center is best to describe the relative frequency  histogram of income for the Canadian population. Assume the graph  looks as follows: a) Mean b) Median  c) Mode 3
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Calculating center and spread  from classes When you do not have the  individual data values, statistics  can only be estimated. Use midpoint as an estimate of  the average value of the  observations within the class. For example, we estimate 5  students have expenses of  $2500 each, 3 students have  expenses of $3500 each. Cannot do estimates when there  are open ended classes. 4 Distribution of student expenses 0 2 4 6 8 10 12 14 16 2000- 3000 3000- 4000 4000- 5000 5000- 6000 6000- 7000 7000- 8000 Number of students CLASS DEFINITION FREQUENCIES 2000-3000 5 3000-4000 3 4000-5000 15 5000-6000 16 6000-7000 8 7000-8000 3
Background image of page 4
Calculating center and spread  from classes (2) 5 n x x n i i = = 1 N X N i i = = 1 μ Sample: Population: Data values available Mean n m f x j c j j = = 1 N m f c j j j = = 1 Sample: Population: Estimating with midpoints c is the number of  classes f is the frequency  count in the class. m is the midpoint of  the class ( 29 N X N i i = - = 1 2 2 σ ( 29 1 1 2 2 - - = = n x x s n i i Variance ( 29 N m f c j i = - = 1 2 2 ( 29 1 1 2 2 - - = = n x m f s c j i j 1 2 1 1 2 2 - - = = = n n x x s n i i n i i N N X X N i i N i i 2 1 1 2 2 - = = = 1 2 1 1 2 2 - - = = = n n fm m f s c j j c j j j N N m f fm c j j j c j j 2 1 1 2 2 - = = =
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Example 6 CLASS DEFINITION FREQUENCIES 2000-3000 5 3000-4000 3 4000-5000 15 5000-6000 16 6000-7000 8 7000-8000 3 Class Definition Frequencies (f
Background image of page 6
Image of page 7
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 05/24/2011 for the course STAT 2507 taught by Professor Masoudmollaalizadehnasari during the Summer '09 term at Carleton CA.

Page1 / 26

STAT 2507A – Week 2 - May 20 - STAT2507AWeek2...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online