Lecture_3

# Lecture_3 - Probability in our Daily Lives How can...

This preview shows pages 1–11. Sign up to view the full content.

Probability in our Daily Lives How can Probability Quantify Randomness?

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Learning Objectives 1. Random Phenomena 2. Law of Large Numbers 3. Probability 4. Independent Trials 5. Finding probabilities 6. Types of Probabilities: Relative Frequency and Subjective
Learning Objective 1: Random Phenomena For random phenomena, the outcome is uncertain In the short-run, the proportion of times that something happens is highly random In the long-run, the proportion of times that something happens becomes very predictable Probability quantifies long-run randomness

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Learning Objective 2 : Law of Large Numbers As the number of trials increase, the proportion of occurrences of any given outcome approaches a particular number “in the long run” For example, as one result of a single coin toss. The Result over many tosses is predictable, as long as the trials as independent . (I.e. the outcome of a new coin toss is not influenced by the result of prior toss.
Learning Objective 3: Probability With random phenomena, the probability of a particular outcome is the proportion of times that the outcome would occur in a long run of observations Example: When rolling a die, the outcome of “6” has probability = 1/6. In other words, the proportion of times that a 6 would occur in a long run of observations is 1/6.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Learning Objective 4 : Independent Trials Different trials of a random phenomenon are independent if the outcome of any one trial is not affected by the outcome of any other trial. Example: If you have 20 flips of a coin in a row that are “heads”, you are not “due” a “tail” - the probability of a tail on your next flip is still 1/2. The trial of flipping a coin is independent of previous flips.
Learning Objective 5: How can we find Probabilities? Calculate theoretical probabilities based on assumptions about the random phenomena. For example, it is often reasonable to assume that outcomes are equally likely such as when flipping a coin, or a rolling a die. Observe many trials of the random phenomenon and use the sample proportion of the number of times the outcome occurs as its probability. This is merely an estimate of the actual probability.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Learning Objective 6 : Types of Probability: Relative Frequency vs. Subjective The relative frequency definition of probability is the long run proportion of times that the outcome occurs in a very large number of trials - not always helpful/possible. When a long run of trials is not feasible, you must rely on subjective information. In this case, the subjective definition of the probability of an outcome is your degree of belief that the outcome will occur based on the information available. Bayesian statistics is a branch of statistics that uses subjective probability as its foundation
: Probability in Our Daily Lives How Can We Find Probabilities?

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Learning Objectives 1.
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern