Aula2_SCII2010 - Sistemas de Controle II Adriano A. G....

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Sistemas de Controle II Adriano A. G. Siqueira Aula 2 - Transformada Z Sistemas de Controle II – p. 1/21 Índice • Definição • Exemplos • Propriedades • Transformada Z Inversa • Solução de Equações a Diferenças • Função de Transferência Discreta Sistemas de Controle II – p. 2/21 Transformada Z • Função discreta x ( kT ) , k = 0 , 1 , ··· , ∞ • Transformada Z X ( z ) = Z { x ( kT ) } = ∞ summationdisplay k =0 x ( kT ) z- k Sistemas de Controle II – p. 3/21 Exemplos • Exemplo 1: x ( kT ) = 1 X ( z ) = ∞ summationdisplay k =0 1 z- k = 1 + z- 1 + z- 2 + z- 3 + ··· • Série geométrica f ( r ) = a + ar + ar 2 + ar 3 + ··· ... • converge para f ( r ) = a 1- r Sistemas de Controle II – p. 4/21 Exemplos • Exemplo 1: x ( kT ) = 1 X ( z ) = ∞ summationdisplay k =0 1 z- k = 1 + z- 1 + z- 2 + z- 3 + ··· • Fazendo a = 1 e r = z- 1 X ( z ) = 1 1- z- 1 = z z- 1 Sistemas de Controle II – p. 5/21 Exemplos • Exemplo 2: x ( kT ) = a kT X ( z ) = ∞ summationdisplay k =0 a kT z- k = 1+ a T z- 1 + a 2 T z- 2 + ··· • Fazendo a = 1...
View Full Document

This note was uploaded on 05/26/2011 for the course COMM 212 taught by Professor Regazzi during the Spring '09 term at Abu Dhabi University.

Page1 / 21

Aula2_SCII2010 - Sistemas de Controle II Adriano A. G....

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online