Midterm-5106-Su10-Last-page

# Midterm-5106-Su10-Last-page - 0&amp;amp;lt;...

This preview shows pages 1–2. Sign up to view the full content.

Name or Student ID: ________________________________ Useful formulae: [Note that you may not need all of these formulae. Use as needed] Utilization: - onDelay transmissi nDelay propagatio Trans Tprop a = = - S ce Dis nDelay propagatio tan = , S=2x10 8 m/s - For stop-and-wait: ) 2 1 ( 1 a p u + - = , where p is the probability that a frame is in error. Utilization for sliding-window mechanisms with window of w: - Go back N: ap p u 2 1 1 + - = , if w fills the pipe, or ) 1 )( 2 1 ( ) 1 ( wp p a p w u + - + - = otherwise - Selective repeat: ) 1 ( p u - = , if w fills the pipe, or ) 2 1 ( ) 1 ( a p w u + - = otherwise - M/D/1: queuing delay ) 1 .( 2 ) 2 ( ρ - - = Ts Tq ; Ts is service time & ρ is link utilization - M/D/1: average queue length or buffer occupancy ) 1 .( 2 . 2 λ - + = = Tq q - M/M/1: queuing delay ) 1 ( - = Ts Tq , buffer occupancy: ) 1 ( - = q - TCP: - slow start CongWin+=1 per ACK, - congestion avoidance CongWin+=1 per RTT, - EstimatedRTT(k)= (1- α )*EstimatedRTT(k-1) + α *SampleRTT(k), 0< α <1 - DevRTT= (1-β)*DevRTT+ β*|SampleRTT – EstimatedRTT|,

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 0&lt; &lt;1-TimeoutInterval = EstimatedRTT + 4*DevRTT ATM ABR rate-based congestion control: -Increase: Rate = min(PCR, Rate + PCR x RIF)-Decrease: Rate = max(MCR, min[ER, Rate Rate x RDF]) Probability distributions and stochastic processes:-Geometric distribution: x is the number of Bernoulli experiments until success, Pr[X=k]=q k-1 p, E(X)=1/p-Binomial distribution: x is the number of successes in n Bernoulli experiments/trials ( 29 ( 29 ! )! ( ! , ) ( k k n n k X P n k k k n n k p q-= = =-, E[X]=np 1 Name or Student ID: ________________________________-Poisson Distribution: Pr[X=k]= ( k /k!) e- ,E[X]=Var[X]= -Exponential distribution: f(x)= e- x , F[x]=1-e- x , Pr[X&gt;x]=1-F[x]=e- x , E[X]=1/ 2...
View Full Document

## Midterm-5106-Su10-Last-page - 0&amp;amp;lt;...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online