L02 - Lecture 2 Functions, Elementary Types A function is...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Lecture 2 — Functions, Elementary Types A function is an object having a rule that assigns to each element of a set A (called the domain) exactly one element of a set B (called the codomain). If the name of the function is f , then the element of B that is assigned to an element x from set A is denoted f ( x ) . This is NOT a multiplication, so you must be aware of the names of functions in use. The set of ALL the values f ( x ) for different x in A is called the range of the function. If the domain of a function f ( x ) is not explicitly stated, it is assumed to be all x for which there is a sensible f ( x ) value— we call it the (natural) domain of the function. For calculus, x and f ( x ) must be real. For applications, the domain may sometimes be smaller than the natural domain due to context.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Consider these three different functions: f ( x ) = x 2 Q ( x ) = x 3 x Area ( x ) = x 2 , where x is the side of a square Find the domain of each function Θ( ω ) = 5 ω 4 + ω Γ( x ) = x 2 + x 2 - 5 x
Background image of page 2
Find the range of the function P ( t ) = 4 t 2 1 + t 2 Calculus will allow us to do this more easily and with more difficult functions.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 12

L02 - Lecture 2 Functions, Elementary Types A function is...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online