{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

03-03-03

# 03-03-03 - Lecture 13 Andrei Antonenko March 3 2003 1...

This preview shows pages 1–3. Sign up to view the full content.

Lecture 13 Andrei Antonenko March 3, 2003 1 Dimension and basis of the span Last lecture we formulated the problem of finding the basis and the dimension of the span of given vectors. This lecture we will give the algorithm to determine these characteristics of the span. 1.1 Algorithm Step 1. Write the given vectors as a rows of a matrix. Step 2. Reduce this matrix to REF keeping track which row in the matrix corresponds to which vector, i.e. initially, i -th row corresponds to u i – so, label i -th row as i , and after Type 1 elementary operation we interchange row labels. Step 3. The number of nonzero rows is a dimension of a span. The labels of nonzero rows are subscripts of vectors in basis. Moreover, nonzero rows form a basis for a span as well. Example 1.1. Consider the following 4 vectors in R 4 : u 1 = (2 , 3 , 1 , 1) , u 2 = (1 , 1 , 0 , - 1) , u 3 = (3 , 4 , 1 , 0) , and u 4 = (1 , 2 , 1 , 3) . Let’s find the basis and a dimension of their span. To do 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
this we’ll form a matrix with labels and reduce it to REF. 1 2 3 4 2 3 1 1 1 1 0 - 1 3 4 1 0 1 2 1 3 interchange 1st and 2nd ˆ 2 1 3 4 1 1 0 - 1 2 3 1 1 3 4 1 0 1 2 1 3 subtract 1st from others ˆ 2 1 3 4 1 1 0 - 1 0 1 1 3 0 1 1 3 0 1 1 4 subtract 2nd from others ˆ 2 1 3 4
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern