This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: PHY 251 Fall 2009: homework problem set 9, due in the PHY 251 drop box in room A129 by noon on Friday, Nov. 20. 1. Serway 10.2 Answer: From Serway Eq. 10.8, we know that the MaxwellBoltzmann velocity distribution is n ( v ) dv = 4 πN V parenleftbigg m 2 πk B T parenrightbigg 3 / 2 v 2 exp[ − mv 2 2 k B T ] dv = B v 2 e Av 2 dv with A ≡ m 2 k B T and B ≡ 4 πN V parenleftbigg A π parenrightbigg 3 / 2 = 4 N √ πV A 3 / 2 . The most probable speed v mp is at the top of the curve, so we take the derivative and set to zero: d dv B v 2 e Av 2 dv = B parenleftBig 2 ve Av 2 + ( − 2 Av ) v 2 e Av 2 parenrightBig = 2 vBe Av 2 (1 − Av 2 ) = 0 1 = Av 2 v mp = radicalBigg 1 A = radicalBigg 2 k B T m 2. Serway 10.8. Show the derivations. Answer: We need to rewrite the MaxwellBoltzmann distribution in terms of kinetic energy K instead of velocity v : K = 1 2 mv 2 → dK = mv dv = √ 2 mK dv → 1 √ 2 mK dK = dv If we substitute these relationships into the expression for n ( v ) dv we get n ( K ) dK = 4 πN V m 3 / 2 2 3 / 2 ( πk B T ) 3 / 2 2 m K exp[ − K k B T ] 1 2 1 / 2 m 1 / 2 √ K dK = 2 πN V 1 ( πk B T ) 3 / 2 √ K exp[ − K k B T ] dK = A √ K exp[ − K k B T ] dK with A ≡ 2 πN V ( πk B T ) 3 / 2 . The peak or K most probable is found by setting the derivative to zero: d dK A √ K exp[ − K k B T ] = 0 A parenleftBigg 1 2 1 √ K exp[ − K k B T ] + √ K exp[ − K k B T ]( − 1 k B T ) parenrightBigg = 0 1 2 √ K = √ K k B T K most probable = k B T 2 1 The mean kinetic energy is found from ( K ) = integraltext K P ( K ) dK . Now n ( K ) gives the num ber of particles per volume, so dividing by the number of particles per volume gives the probability P ( K ) . Now let’s define x ≡ K/k B T so K = xk B T and dK = k B T dx : ( K ) = integraldisplay ∞ K =0 K 1 N/V 2 πN V π 3 / 2 ( k B T ) 3 / 2 √ K exp[ − K k B T ] dK = integraldisplay ∞ x =0 2 π π 3 / 2 ( k B T ) 3 / 2 ( xk B T ) 3 / 2 exp[ − x ] k B T dx = 2 √ π ( k B T ) integraldisplay ∞ x =0 x 3 / 2 exp[ − x ] dx...
View
Full
Document
This note was uploaded on 05/28/2011 for the course PHY 251 taught by Professor Rijssenbeek during the Fall '01 term at SUNY Stony Brook.
 Fall '01
 Rijssenbeek
 Physics, Work

Click to edit the document details