{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Chapter3_17

# Chapter3_17 - I planck planck σ = = = where 4 2 8 2 3 4 5...

This preview shows page 1. Sign up to view the full content.

PHY3063 R. D. Field Department of Physics Chapter3_17.doc University of Florida Agrees with the data! Fermi Geometric factor Planck’s Theory (4) Calculate Total Energy Density: If we integrate of all wavelengths we get = = 0 / 5 0 1 1 8 ) ( ) ( λ λ π λ λ ρ λ d e hc d T U T k hc T planck . Again change variables to y = 1/z = hc/(kx) = hc/(k λ T) . Get 4 0 3 4 ) ( 8 ) ( T I hc k T U planck π = , where 15 1 4 0 3 0 π = = dy e y I y . Thus, 4 3 4 5 ) ( 15 8 ) ( T hc k T U planck π = . Note that 4 4 2 3 4 5 15 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: I planck planck σ = = = , where 4 2 8 2 3 4 5 10 672 . 5 15 2 − − − × = = K Wm c h k More Useful Numbers: s J h ⋅ × = = − 34 10 0546 . 1 2 h fm MeV c ⋅ = 328 . 197 h fm MeV hc ⋅ = 85 . 239 , 1 m fm 15 10 1 − = nm m A o 1 . 10 1 10 = = − Angström Derive Stefan-Boltzmann Constant!...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online