Chapter4_11

# Chapter4_11 - PHY4604 R D Field The Hydrogen Atom –...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: PHY4604 R. D. Field The Hydrogen Atom – Quantum Mechanics (2) Radial Wave Function: We see that α 2mc2 2αmc 1 h 2κ 2 2α 2 mc2 = =− =− En = − and κ = , ρ02 2m 2n 2 hρ0 r0n where I used ρ0 = 2n and where r0 is the Bohr radius r0 = D / α . Thus, r 1 1 l +1 − ρ j ρ = κr = and Rnl (r ) = U nl ( ρ ) = ρ e ∑ c j ρ j , r0n r r j =0 where jmax = l + 1 - n, n = 1, 2, 3, … and l = 0, 1, 2, …, n-1. max Complete Wave Function: The overall wave function is ψ nlm (r , θ , φ ) = Rnl (r )Ylm (θ , φ ) . Normalization: These wave functions form and orthonormal set ∞ 2π π ∫ ∫ ∫ [ψ (r ,θ , φ )] ψ nlm (r ,θ , φ )r 2 sin θdrdθdφ ∗ n 'l 'm ' 0 00 ∞ 2π π = ∫ R (r ) Rnl (r )r dr ∫ ∫ [Yl 'm ' (θ , φ )] Ylm (θ , φ ) sin θdθdφ = δ n 'nδ ll 'δ mm ' ∗ n 'l ' ∗ 2 0 00 2π π ∫ ∫ [Y (θ , φ )] Ylm (θ , φ ) sin θdθdφ = δ ll 'δ mm ' ∗ l 'm ' 00 ∞ ∫R ∗ n 'l (r ) Rnl (r )r 2 dr = δ n 'n 0 Ground State: For the ground state n = 0, l = 0, and m = 0. E1 = − 1 α 2 mc2 ≈ −13.6eV , R10 (r ) = 2 2 e −r / r0 , Y00 (θ , φ ) = 1 / 4π (r0 )3 / 2 and ψ 100 (r ,θ ,φ ) = 1 πr 3 0 e − r / r0 . The <r> in the ground state is ∞ 2π π < r >100 = ∫ ∫ ∫ [ψ (r ,θ , φ )] rψ 100 (r ,θ , φ )r 2 sin θdrdθdφ ∗ 100 0 00 ∞ ∞ ( 4 r r = 3 ∫ r 3e −2 r / r0 dr == 0 ∫ y 3e − y dy = 0 (− y 3 − 3 y 2 − 6 y − 6)e − y 40 4 r0 0 Department of Physics Chapter4_11.doc ) ∞ 0 = 3r0 2 University of Florida ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online