PhD_KrisMampaey_Monitoring_and_modelling_of_N2O_emissions_from_innovative_nitrogen_removal_processes - Promotors Prof dr ir Eveline I P Volcke

PhD_KrisMampaey_Monitoring_and_modelling_of_N2O_emissions_from_innovative_nitrogen_removal_processes

This preview shows page 1 out of 210 pages.

You've reached the end of your free preview.

Want to read all 210 pages?

Unformatted text preview: Promotors: Prof. dr. ir. Eveline I. P. Volcke Department of Biosystems Engineering, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium [email protected] Prof. dr. ir. Mark C. M. van Loosdrecht Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands [email protected] Members of the examination Committee Prof. dr. ir. Pascal Boeckx (Chairman) Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University, Belgium Prof. dr. ir. Stijn Van Hulle (Secretary) Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University, Belgium Prof. dr. ir. Jan Dries Department of Chemistry/Biochemistry, Faculty of Applied Engineering, University Antwerp, Belgium Dr. Ramon Ganigue Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Belgium Dr. ir. Mathieu Sperandio Institut National des Sciences Appliquées de Toulouse, France Dean Prof. dr. ir. Marc Van Meirvenne Rector: Prof. dr. Anne De Paepe Kris E. Mampaey Monitoring and modelling of N2O emissions from innovative nitrogen removal processes Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) of Applied Biological Sciences: Environmental Technology Dutch translation of the title: Meten en modelleren van stikstofverwijderingsprocessen N2O emissies bij innovatieve Please refer to this work as Mampaey K. E. (2016). Monitoring and modelling of N 2 O emissions from innovative nitrogen removal processes. Ph.D. Thesis, Faculty of Bioscience Engineering, Ghent University, Belgium, pp. 184. Printing: University Press, Zelzate Copyright 2016 Kris E. Mampaey ISBN: 978-90-5989-870-7 The author and promotors give the authorisation to consult and copy parts of this work for personal use only. Every other use is subject to copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. Acknowledgements Acknowledgements Here we are, six years after the starting my PhD research, with this book to show for. This result could not have been possible without the help of a lot of people, whom I all thank dearly. I had the privilege to have performed research under the guidance of two promotors, prof. dr. ir. Eveline Volcke and prof. dr. ir. Mark van Loosdrecht. I am very grateful for your research guidance, your enthusiasm and help including the last minute rush. Eveline, it have been six interesting years. During this period I learned a lot, not only about my research, but also the broader environmental context. Thank you for the vast amount of time you made available for the discussions and guidance, no matter how busy your schedule was. I’ve had the opportunity to assist in teaching a variety of topics, which I enjoyed thoroughly. I’ve appreciated the received trust and freedom. Mark, the meetings with you were always very inspiring, the feeling after a meeting was indescribable, yet I’ll try to reproduce. Regardless of the topic, you are an expert and you have the talent to make everything clear. After a meeting the research challenges seemed trivial and a ton of new, refreshing ideas were already sprouting. It is as Matthijs mentioned, you know how to bring out the best in people. I thank all reviewers – Jan, Mathieu, Ramon, Stijn, – for their thorough review and contribution to this Ph.D. thesis. I thank Jan Pieters, giving me the opportunity to work in a great research group, Biosystems Engineering, and all who was and is still part of the group, Dieter, Eddy, Lut, Frederik, Wolter, Fons, Ivan, and fellow researchers, Bart, Caroline, Celia, Dane, Güray, Janis, Jop, Leentje, Lucie, Luis, Mari, Matthijs, Mike, Mingsheng, Quan, Rob, Thomas. The colleagues from Delft, even though I stayed there for only a short period, you made me feel right at home. Udo, thank you for the practical support in the preparation of the monitoring campaign, especially with the concept of the gas stripping device. Furthermore, I enjoyed the research related talks, also the non-research related parts such as the discovery of Dutch fusion cooking. I thank Dane, Paul and Thomas for all the philosophical discussions we had. Over the years it became apparent that doing a PhD truly brings out philosophical questions and discussions. Furthermore all my music related friends, for the small talk, laughs, some truly unique opportunities and from time to time research suggestions. Last but not least my parents, for all the support and encouragement in what I do. Kris Mampaey Ghent, February 2016 vi Table of Contents Table of Contents Acknowledgements ......................................................................................... v List of abbreviations ....................................................................................... xi List of symbols .............................................................................................. xii Summary ..................................................................................................... xvii Samenvatting ................................................................................................ xxi Chapter 1 Introduction..................................................................................... 1 1.1 Highlights in the history of wastewater management and treatment .... 1 1.2 Biological nitrogen cycle ...................................................................... 3 1.3 Nitrous oxide – potent greenhouse gas – formation mechanisms ......... 4 1.4 Overall objective................................................................................... 5 Chapter 2 Modelling nitrous and nitric oxide emissions by autotrophic ammonia oxidising bacteria ............................................................................. 9 2.1 Abstract............................................................................................... 10 2.2 Introduction ........................................................................................ 11 2.3 Modelling NO and N 2 O emission from a partial nitritation reactor ... 12 2.3.1 Modelling NO and N 2 O formation .............................................. 12 2.3.2 Partial nitritation (SHARON) reactor model ............................... 19 2.4 Simulation results and discussion ....................................................... 21 2.4.1 Continuously aerated reactor behaviour ...................................... 21 2.4.2 Intermittently aerated reactor behaviour ...................................... 25 2.5 Conclusions ........................................................................................ 30 2.6 Appendix: Differences between the model in this study and the version presented at the WEF-IWA Conference on Nutrient Recovery and Management 2011 .................................................................................... 31 Chapter 3 Novel method for online monitoring of dissolved N 2 O concentrations through a gas stripping device ............................................... 35 3.1 Abstract............................................................................................... 36 3.2 Introduction ........................................................................................ 37 vii Table of Contents 3.3 Materials and Methods ........................................................................38 3.3.1 Lay-out of the gas stripping device ..............................................38 3.3.2 Full-scale SHARON partial nitritation reactor .............................39 3.3.3 Full-scale partial nitritation anammox reactor .............................39 3.4 Measurement principle ........................................................................41 3.4.1 Dynamics of the gas stripping device ..........................................41 3.4.2 Dynamics of the SHARON reactor ..............................................44 3.4.3 Dynamics of the partial nitritation anammox reactor ...................46 3.5 Results and discussion ........................................................................48 3.5.1 Calibration - Batch stripping test .................................................48 3.5.2 Application to a full-scale PN (SHARON) reactor ......................51 3.5.3 Application to a full-scale PNA reactor .......................................55 3.5.4 Gas stripping device performance ................................................62 3.5.5 Complementarity to other measurement methods & application potential ................................................................................................65 3.6 Conclusions .........................................................................................67 3.7 Appendix .............................................................................................69 3.7.1 Gas stripping device .....................................................................69 3.7.2 Reactor behaviour – on/off aeration control (SHARON reactor).82 3.7.3 Reactor behaviour – high-low aeration control (PNA reactor) ....88 Chapter 4 Identifying N 2 O formation and emissions from a full-scale partial nitritation reactor ........................................................................................... 97 4.1 Abstract ...............................................................................................98 4.2 Introduction .........................................................................................99 4.3 Materials and methods ......................................................................100 4.3.1 Process layout – SHARON reactor ............................................100 4.3.2 Monitoring campaign .................................................................102 4.3.3 Estimating the interphase transfer rate in dynamic systems .......104 4.4 Results ...............................................................................................104 4.4.1 Elemental mass balances ............................................................104 4.4.2 Standard operation cycles ..........................................................105 4.4.3 Experiments ...............................................................................108 viii Table of Contents 4.5 Discussion ......................................................................................... 114 4.5.1 Estimating k L a in dynamic systems ........................................... 114 4.5.2 N 2 O emission from a full-scale partial nitritation reactor.......... 115 4.5.3 N 2 O formation mechanisms ...................................................... 119 4.5.4 Mitigation measures ................................................................... 121 4.6 Conclusions ...................................................................................... 122 4.7 Acknowledgements........................................................................... 122 4.8 Appendix to Identifying N 2 O formation and emissions from a full-scale partial nitritation reactor ......................................................................... 123 4.8.1 Elemental mass balances ........................................................... 123 4.8.2 Experiments ............................................................................... 126 4.8.3 Shortened cycles experiment ..................................................... 129 4.8.4 Data analysis for Kampschreur et al. (2008b)............................ 130 Chapter 5 Dynamic simulation of N 2 O emissions from a full-scale partial nitritation reactor ......................................................................................... 131 5.1 Abstract............................................................................................. 132 5.2 Introduction ...................................................................................... 133 5.3 Materials and methods ...................................................................... 134 5.3.1 Full-scale monitoring data ......................................................... 134 5.3.2 Biological conversions ............................................................... 134 5.3.3 Mass balances and physicochemical model features ................. 135 5.4 Results and discussion ...................................................................... 137 5.4.1 Overall reactor performance ...................................................... 137 5.4.2 Qualitative assessment N 2 O formation pathways ...................... 138 5.4.3 Model calibration and quantitative assessment N 2 O formation pathways ............................................................................................. 140 5.4.4 Validation .................................................................................. 144 5.5 Conclusions ...................................................................................... 147 5.6 Appendix to Dynamic simulation of N 2 O emissions from a full-scale partial nitritation reactor ......................................................................... 149 5.6.1 Biological conversion reactions ................................................. 149 5.6.2 Qualitative assessment of N 2 O formation pathways ................. 155 ix Table of Contents Chapter 6 Conclusions and perspectives...................................................... 161 6.1 Modelling N 2 O formation mechanisms ............................................162 6.2 Measurement methods ......................................................................165 6.3 N 2 O emissions from full-scale partial nitritation and partial nitritationanammox reactors ...................................................................................166 6.4 Mitigation measures ..........................................................................167 6.5 The bigger picture .............................................................................168 References ................................................................................................... 170 Curriculum Vitae ......................................................................................... 182 x List of abbreviations List of abbreviations Abbreviation AOB ASM BOD COD DNRA DO GHG HET HRT IPCC NOB PN PNA SHARON SRT TIC Description Ammonia-Oxidising Bacteria Activated Sludge Model Biological Oxygen Demand Chemical Oxygen Demand Dissimilatory Nitrate Reduction to Ammonium Dissolved Oxygen Greenhouse gas(es) Heterotrophic bacteria Hydraulic Retention Time Intergovernmental Panel on Climate Change Nitrite Oxidising Bacteria Partial Nitritation Partial Nitritation Anammox Single reactor High activity Ammonia Removal Over Nitrite Sludge Retention Time TNH Total ammonium: TNH TNO 2 Total nitrite: WWTP WasteWater Treatment Plant Total Inorganic Carbon TIC H 2 CO3  HCO3  CO32  NH 4  NH 3 NO2  HNO2 TNO2 xi List of symbols List of symbols Symbol a1 a2 a3 a4 a5 bAOB Characterisation Constant term - parameter obtained from data fitting Pre-exponential factor - parameter obtained from data fitting Exponential factor - parameter obtained from data fitting Pre-exponential factor - parameter obtained from data fitting Exponential factor - parameter obtained from data fitting Decay coefficient AOB Unit g N .m -3 L g N .m -3 L min-1 g N .m -3 L min-1 d-1 bHET Decay coefficient HET d-1 bNOB Decay coefficient NOB d-1 C L ,i Dissolved concentration component i g i.m -3 L CGin t Incoming gas N 2 O concentration g N.m -3 G CG ,1 t Gas bubble N 2 O concentration g N.m -3 G CG , 2 t Bulk gas phase N 2 O concentration g N.m -3 G CG t Partial nitritation anammox reactor off-gas N 2 O concentration Dissolved N 2 O concentration g N.m -3 G DG Gas phase dilution rate min 1 DL Liquid phase dilution rate min 1 Di Diffusion coefficient of component i m 2 .s 1 fB Ratio of maximum NO and N 2 O formation rate in scenario B versus A Fraction ammonia oxidised with HNO 2 as partial electron acceptor (scenario A) Fraction biomass debris - g Gravitational constant m.s-2 H Henry coefficient for component N 2 O g N.mG3 g N.m L3 Hi Henry coefficient for component i g N.mG3 g N.m L3 CL t f DNT , A fD xii g N.m -3 L gCOD.gCOD-1 List of symbols Symbol Characterisation Liquid level (height) in the reactor Unit M Inhibition constant for O 2 (indirect pathway) Nitrogen content of active biomass g O 2 .m-3 iN , X D Nitrogen content of biomass debris g N.gCOD-1 I O2 , anox O 2 inhibition constant for denitrification g O 2 .m-3 I NO , anox ,TNO 2 NO inhibition constant for NO2 o NO g N.m-3 I NO , anox, NO NO inhibition constant for NO o N 2O g N.m-3 I NO , anox , N 2O NO inhibition constant for N 2O o N 2 g N.m-3 I O2 , h O 2 inhibition constant hydrolysis g O 2 .m-3 I NH 3 , NOB NH 3 inhibition constant g N.m-3 I HNO2 , NOB HNO 2 inhibition constant g N.m-3 K System gain of the gas stripping device Interphase mass transfer coefficient for component i AOB affinity constant for NH 3 - or dB min-1 g N.m-3 K NH 2OH , AOB AOB affinity constant for NH 2 OH g N.m-3 K NH 2OH , AOB AOB affinity constant for NH 2 OH g N.m-3 K HNO2 , AOB AOB affinity constant for HNO 2 g N.m-3 K NO , AOB, HAO AOB affinity constant for NO (from HAO) g N.m-3 K NO , AOB, Nor AOB affinity constant for NO (from NirK) g N.m-3 K O2 , AOB, AMO AOB affinity constant for O 2 (AMO reaction) AOB affinity constant for O 2 (HAO reaction) Affinity constant aerobic conversion S S g O 2 .m-3 Affinity constant (S S ) for g COD.m-3 hL I O2 , AOB i N ,BM kLa i K NH 3 , AOB K O2 , AOB, HAO K S S , aer KS  S ,NO3 NO3 o g N.gCOD-1 g O 2 .m-3 g COD.m-3 NO2 K S S ,TNO2 Affinity constant (S S ) for NO2 o NO g COD.m-3 K S S , NO Affinity constant (S S ) for NO o N 2O g COD.m-3 K S S , N 2O Affinity constant (S S ) for N 2O o N 2 g COD.m-3 K O2 , aer Affinity constant (O 2 ) aerobic conversion SS xiii g COD.m-3 List of symbols Symbol Characterisation K NO  , anox 3 Affinity constant ( NO3 ) denitrification KTNO2 , anox Affinity constant ( TNO2 ) denitrification g N.m-3 K NO , anox Affinity constant ( NO ) denitrification g N.m-3 K N 2O , anox Affinity constant ( N 2 O ) denitrification g N.m-3 K XS Affinity constant (X S ) hydrolysis g COD.m-3 kh Hydrolysis coefficient g COD.gCOD-1.d-1  Unit g N.m-3 K NO  Affinity constant ( NO3 ) hydrolysis g N.m-3 K O2 , h Affinity constant (O 2 ) hydrolysis g O 2 .m-3 K HNO2 , NOB NOB affinity constant for HNO 2 g N.m-3 K O2 , NOB NOB affinity constant for O 2 g O 2 .m-3 q AOB, AMO Maximum rate for AMO reaction (μ AOB /Y AOB ) Maximum rate for HAO reaction (μ AOB /Y AOB ) Maximum rate for N 2 O formation by direct pathway Maximum rate for N 2 O formation by direct pathway Liquid flow rate g N.gCOD-1.d-1 g N.gCOD-1.d-1 RV Volumetric N 2 O formation rate g N.m-3.min-1 RVR Volumetric N 2 O formation rate in the reactor Gas bubble volume g N.m-3.min-1 VG , 2 Headspace volume m 3G vG , s Superficial gas flow rate mG3 .d 1.m 2 VL Liquid volume gas stripping device m3L X AOB Ammonia oxidising biomass g COD.m-3 X HET Heterotrophic biomass g COD.m-3 X NOB Nitrite oxidising biomass g COD.m-3 YAOB AOB growth yield g COD.g N-1 YHET Heterotrophic yield g COD.g COD-1 YNOB NOB growth yield g COD.g N-1 G H 2O Density of water kg.m-3 3 q AOB,HAO q AOB, N 2O , direct q AOB, N 2O ,indirect QL VG ,1  xiv g N.gCOD-1.d-1 g N.gCOD-1.d-1 m3.min-1 m 3G List of symbols Symbol Characterisation Maximum AOB growth rate Unit d-1 Maximum AOB growth rate during HAO reaction Maximum specific growth rate HET d-1 d-1 Pmax, NOB Maximum specific growth rate NOB d-1 KYHET Anoxic yield factor - Kh Anoxic hydrolysis factor - K HET ,NO  Anoxic reduction factor denitrification - K HET ,TNO2 Anoxic reduction factor denitrification K HET , NO Anoxic reduction factor denitrification K HET , N 2O Anoxic reduction factor denitrific...
View Full Document

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture