ch16-p006

# ch16-p006 - 6 Setting x = 0 in u = −ω ym cos(k x − ω...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 6. Setting x = 0 in u = −ω ym cos(k x − ω t + φ) (see Eq. 16-21 or Eq. 16-28) gives u = −ω ym cos(−ω t+φ) as the function being plotted in the graph. We note that it has a positive “slope” (referring to its t-derivative) at t = 0: du dt = d (−ω ym cos(−ω t+ dt φ)) = − ym ω² sin(−ω t + φ) > 0 at t = 0. This implies that – sinφ > 0 and consequently that φ is in either the third or fourth quadrant. The graph shows (at t = 0) u = −4 m/s, and (at some later t) umax = 5 m/s. We note that umax = ym ω. Therefore, u = − umax cos(− ω t + φ) |t = 0 φ = cos−1( 4 ) = ± 0.6435 rad 5 (bear in mind that cosθ = cos(−θ )), and we must choose φ = −0.64 rad (since this is about −37° and is in fourth quadrant). Of course, this answer added to 2nπ is still a valid answer (where n is any integer), so that, for example, φ = −0.64 + 2π = 5.64 rad is also an acceptable result. ...
View Full Document

## This note was uploaded on 06/03/2011 for the course PHY 2049 taught by Professor Any during the Spring '08 term at University of Florida.

Ask a homework question - tutors are online