ch19-p016

# ch19-p016 - 16. We assume that the pressure of the air in...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 16. We assume that the pressure of the air in the bubble is essentially the same as the pressure in the surrounding water. If d is the depth of the lake and ρ is the density of water, then the pressure at the bottom of the lake is p1 = p0 + ρgd, where p0 is atmospheric pressure. Since p1V1 = nRT1, the number of moles of gas in the bubble is n = p1V1/RT1 = (p0 + ρgd)V1/RT1, where V1 is the volume of the bubble at the bottom of the lake and T1 is the temperature there. At the surface of the lake the pressure is p0 and the volume of the bubble is V2 = nRT2/p0. We substitute for n to obtain V2 = T2 p0 + ρ gd V1 T1 p0 293K = 277 K ( )( ) 1.013 × 105 Pa + 0.998 × 103 kg/m3 9.8 m/s 2 ( 40 m ) = 1.0 × 102 cm3 . 5 1.013 × 10 Pa ( 20 cm ) 3 ...
View Full Document

## This note was uploaded on 06/03/2011 for the course PHY 2049 taught by Professor Any during the Spring '08 term at University of Florida.

Ask a homework question - tutors are online