{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

ch8_011702 - 1 Embedded Systems Design A Unified...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1 Embedded Systems Design: A Unified Hardware/Software Introduction Chapter 8: State Machine and Concurrent Process Model 2 Embedded Systems Design: A Unified Hardware/Software Introduction, (c) 2000 Vahid/Givargis Outline • Models vs. Languages • State Machine Model – FSM/FSMD – HCFSM and Statecharts Language – Program-State Machine (PSM) Model • Concurrent Process Model – Communication – Synchronization – Implementation • Dataflow Model • Real-Time Systems 3 Embedded Systems Design: A Unified Hardware/Software Introduction, (c) 2000 Vahid/Givargis • Describing embedded system’s processing behavior – Can be extremely difficult • Complexity increasing with increasing IC capacity – Past: washing machines, small games, etc. • Hundreds of lines of code – Today: TV set-top boxes, Cell phone, etc. • Hundreds of thousands of lines of code • Desired behavior often not fully understood in beginning – Many implementation bugs due to description mistakes/omissions – English (or other natural language) common starting point • Precise description difficult to impossible • Example: Motor Vehicle Code – thousands of pages long... Introduction 4 Embedded Systems Design: A Unified Hardware/Software Introduction, (c) 2000 Vahid/Givargis An example of trying to be precise in English • California Vehicle Code – Right-of-way of crosswalks • 21950. (a) The driver of a vehicle shall yield the right-of-way to a pedestrian crossing the roadway within any marked crosswalk or within any unmarked crosswalk at an intersection, except as otherwise provided in this chapter. • (b) The provisions of this section shall not relieve a pedestrian from the duty of using due care for his or her safety. No pedestrian shall suddenly leave a curb or other place of safety and walk or run into the path of a vehicle which is so close as to constitute an immediate hazard. No pedestrian shall unnecessarily stop or delay traffic while in a marked or unmarked crosswalk. • (c) The provisions of subdivision (b) shall not relieve a driver of a vehicle from the duty of exercising due care for the safety of any pedestrian within any marked crosswalk or within any unmarked crosswalk at an intersection. – All that just for crossing the street (and there’s much more)! 5 Embedded Systems Design: A Unified Hardware/Software Introduction, (c) 2000 Vahid/Givargis Models and languages • How can we (precisely) capture behavior? – We may think of languages (C, C++), but computation model is the key • Common computation models: – Sequential program model • Statements, rules for composing statements, semantics for executing them – Communicating process model • Multiple sequential programs running concurrently – State machine model • For control dominated systems, monitors control inputs, sets control outputs – Dataflow model • For data dominated systems, transforms input data streams into output streams – Object-oriented model • For breaking complex software into simpler, well-defined pieces 6...
View Full Document

{[ snackBarMessage ]}

Page1 / 52

ch8_011702 - 1 Embedded Systems Design A Unified...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon bookmark
Ask a homework question - tutors are online