final sol

# final sol - 32A/1 WINTER QUARTER 2009 FINAL EXAM SOLUTIONS...

This preview shows pages 1–4. Sign up to view the full content.

32A/1 - WINTER QUARTER 2009 FINAL EXAM SOLUTIONS PROBLEM 1 VERSION 1. We are using the equation x 3 x 2 y xy 2 + y 3 =0 to put y as a function of x. Can the implicit function theorem be used ( a )(3points) at the point ( x 0 ,y 0 )=(1 , 1)? ( b x 0 0 , 1)? ( c )(4points). Assuming the implicit function theorem can be used, write an expression for y 0 ( x )= The right side of this expression will contain x, y ( x ) . SOLUTION. f ( x, y x 3 x 2 y xy 2 + y 3 , ∂f ( x, y ) ∂x =3 x 2 2 xy y 2 , ( x, y ) ∂y = x 2 2 xy +3 y 2 . ( a ) f (1 , 1)=1 1 1+1=0 , (1 , 1) = 1 2+3=0 . NO ( b ) f (1 , 1)=1+1 1 1=0 , (1 , 1) = 1+2+3=4 6 . YES ( c ) y 0 ( x ( x, y ) . ( x, y ) = 3 x 2 +2 xy ( x )+ y ( x ) 2 x 2 2 xy ( x )+3 y ( x ) 2 . PROBLEM 1 VERSION 2. We are using the equation x 3 + x 2 y xy 2 y 3 to put y as a function of x. Can the implicit function theorem be used ( a x 0 0 , 1)? ( b x 0 0 , 1)? ( c )(4points). Assuming the implicit function theorem can be used, write an expression for y 0 ( x The right side of this expression will contain x, y ( x ) . SOLUTION. f ( x, y x 3 + x 2 y xy 2 y 3 , ( x, y ) x 2 xy y 2 , ( x, y ) = x 2 2 xy 3 y 2 . 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
( a ) f (1 , 1)=1+1 1 1=0 , ∂f (1 , 1) ∂y =1 2 3= 4 . YES ( b ) f (1 , 1)=1 1 1+1=0 , (1 , 1) =1+2 3=0 . NO ( c ) y 0 ( x )= ( x, y ) ∂x . ( x, y ) = 3 x 2 2 xy ( x )+ y ( x ) 2 x 2 2 xy ( x ) 3 y ( x ) 2 . PROBLEM 2 VERSION 1. Consider the function f ( x, y )=3 y 3 x 2 y 3 xy 2 y 3 ( a )(5points). Find all critical points of f ( x, y ) , that is, solve the system ( x, y ) =0 , ( x, y ) . Hint: the ±rst equation gives two values of y, one a function of x ; replacing each of these values in the second equation two values of x are obtained. ( b )(5points). Using the Hessian decide whether each critical point in ( a )i sa maximum, minimum or saddle point. SOLUTION. ( a )Wehave ( x, y ) = 6 xy 3 y 2 = 3 y (2 x y )=0 = y =0or y =2 x The other equation is ( x, y ) =3 3 x 2 6 xy 3 y 2 . For y =0we get 3 3 x 2 = 3(1 x 2 x =1or x = 1 . y = 2 x we get 3 3 x 2 +12 x 2 12 x 2 3 x 3 = 3(1 x 2 x x = 1 . Accordingly, (1 , 0) , ( 1 , 0) , (1 , 2) , ( 1 , 2) CRITICAL POINTS ( b f 11 ( x, y 2 f ( x, y ) 2 = 6 2 f ( x, y ) ∂x∂y = 6( x + y ) , 2 f ( x, y ) 2 = 6( x + y ) , so the Hessian is H ( x, y ¯ ¯ ¯ ¯ 6 y 6( x + y ) 6( x + y ) 6( x + y ) ¯ ¯ ¯ ¯ =36 y ( x + y ) 36( x + y ) 2 = 36( x + y )( y ( x + y )) = 36 x ( x + y ) H (1 , 0) = 36 < 0 Saddle point H ( 1 , 0) = 36 < 0 Saddle point H (1 , 2) = 36 > 0 ,f 11 (1 , 2) > 0 Minimum H ( 1 , 2) = 36 > 0 11 (1 , 2) < 0 Maximum (all local) 2
PROBLEM 2 VERSION 2. Consider the function f ( x, y )=3 x 2 y +3 xy 2 + y 3 3 y ( a )(5points). Find all critical points of f ( x, y ) , that is, solve the system ∂f ( x, y ) ∂x =0 , ( x, y ) ∂y .

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 8

final sol - 32A/1 WINTER QUARTER 2009 FINAL EXAM SOLUTIONS...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online