STAT4290 April 18th 2011 Notes

# STAT4290 April 18th 2011 Notes - ≤ =-limn Gxn limn PD xn...

This preview shows pages 1–2. Sign up to view the full content.

Testing the form of the distribution Two-sided Ho: F(x) =  Fo(x)     for all x  R Ha:  F(x)   Fo(x)    for at least one x D =  sup |fo(x) – S(x)| (greatest vertical distance between Fo(x) and S(x)) One-sided Ho: F(x) = >  Fo(x)   for all x  R Ha:  F(x)  < Fo(x)                  for at least one x D + = sup |fo(x) – S(x)| (greatest vertical distance by Fo(x) above   S(x)) Or Ho: F(x) <= Fo(x)     for all x  R Ha:  F(x)  >  Fo(x)                 for at least one x D - = sup | S(x) – fo(x)  | <greatest vertical distance by  S(x) above Fo(x)> When F(x) is continuous, and under H0, the exact distribution of D+ and D- is give by                   Greatest integer less than or equal to n (1-x) = - = [ ( - )] ( - - ) - ( + ) - Gx 1 xj 0 n 1 x nj 1 x jn n j x jn j 1 As  → ∞, n →∞ = →∞

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: +≤ = - -limn Gxn limn PD xn 1 e 2x2 , ≤ = +≤ -≤ ≈[ ( )] So PD x PD x and D x G x 2 Exact quantiles – Table A13 Notes: they are exact only if F(x) is continuous. If it’s discrete, the quantiles lead to a conservative test – it’s going to be harder to reject Ho than it should be. But – do we want to reject Ho. For discrete F(x), we can calculate exact p-values One-sided test I. Let + Dobs denote the observed value of + D-Compute the probabilities , ≤ ≤ ( -+ fj 0 j n 1 Dobs ), by drawing a horizontal line directly on a graph of Fo(x), with ordinate -1 +- : Dobs jn-={ -+- fj 1 Dobs jn heigh to Foxat botton of jumpif the horizontal like doesn'tintersect Foxat a jumpif the horizontal line intersect Foxat a jump-Compute the constants e0, e1,…. As e0 = 1-<Look at the book…please>-II. ffff--...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern