{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

ThirdExam_s02

# ThirdExam_s02 - ESE 271 Third Exam Name Spring 2002 ID...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ESE 271 Third Exam Name: Spring, 2002 ID Number: Do not place your answers on this front page. Prob. l: Prob. 2: Prob. 3: Prob. 4:- Prob. I. (25 points): The network is in the DC steady state at t = 0—. (a) Find v(0+) an‘d 1501+) 0’) Find 52(0+). (Hint: Use Kirchhoﬁ’s voltage law.) iii“ 2 ﬁ— 55 no? I‘m“) [ubvc'mk “Do (Cunard! "v a 'r uM-) ) g V (you‘d a” CAPAm-mn. no r M T nr (0+ '-" 5 -:.- 2('2(\$+> + (1'20") +06 0 __": 8 6'1(¢3") Prob. 2: (20 points): Solve the following convolution equation to determine the Laplace transform F(s) of f(t) as a polynomial over a polynomial. The initial value of ﬁt) is f(0+) = 2. d t (Ti: [0 f(t-—r)e"3"dr l ,4th -2 : Fmtm— l FLA”! (A“'z:3— : 2 2 2/A+3) Fa): ---*““T"“‘ = 1 A” m 4+34-I Prob. 4: [25 points): i Determine the function of time t that is the inverse Laplace transform of 3+4 BU + El 82 i Fm = M. + m): m A: A +4a : 5; , 3 i 4‘ . 3 : M — - o A'i'i 157-2 _ 2 B — ‘5!— A+4 [n+1 ‘(4f‘4j ‘3 _ : ~—~————--——— ~— 2 " 3 I ((11 4+t A:_2 (4+!)1 A_~2 h‘f'f) 1A“-1 -HL‘JZ A+9 |J( '3 -_--"-/»3)(-2)*‘_J"- 83'” 2 41 A+l A *1 : E ‘7‘: (AH): Alf-2 2 (‘4+’)3/A='1 :_- —3 3o, : 1 i _ — 2* = - ' {hit-‘38 2 '2 Z; 61 "32:6! #3912! ‘ 2 -r -21 mt?“ For: [>0 ...
View Full Document

{[ snackBarMessage ]}