{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

ThirdExam_s02 - ESE 271 Third Exam Name Spring 2002 ID...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ESE 271 Third Exam Name: Spring, 2002 ID Number: Do not place your answers on this front page. Prob. l: Prob. 2: Prob. 3: Prob. 4:- Prob. I. (25 points): The network is in the DC steady state at t = 0—. (a) Find v(0+) an‘d 1501+) 0’) Find 52(0+). (Hint: Use Kirchhofi’s voltage law.) iii“ 2 fi— 55 no? I‘m“) [ubvc'mk “Do (Cunard! "v a 'r uM-) ) g V (you‘d a” CAPAm-mn. no r M T nr (0+ '-" 5 -:.- 2('2($+> + (1'20") +06 0 __": 8 6'1(¢3") Prob. 2: (20 points): Solve the following convolution equation to determine the Laplace transform F(s) of f(t) as a polynomial over a polynomial. The initial value of fit) is f(0+) = 2. d t (Ti: [0 f(t-—r)e"3"dr l ,4th -2 : Fmtm— l FLA”! (A“'z:3— : 2 2 2/A+3) Fa): ---*““T"“‘ = 1 A” m 4+34-I Prob. 4: [25 points): i Determine the function of time t that is the inverse Laplace transform of 3+4 BU + El 82 i Fm = M. + m): m A: A +4a : 5; , 3 i 4‘ . 3 : M — - o A'i'i 157-2 _ 2 B — ‘5!— A+4 [n+1 ‘(4f‘4j ‘3 _ : ~—~————--——— ~— 2 " 3 I ((11 4+t A:_2 (4+!)1 A_~2 h‘f'f) 1A“-1 -HL‘JZ A+9 |J( '3 -_--"-/»3)(-2)*‘_J"- 83'” 2 41 A+l A *1 : E ‘7‘: (AH): Alf-2 2 (‘4+’)3/A='1 :_- —3 3o, : 1 i _ — 2* = - ' {hit-‘38 2 '2 Z; 61 "32:6! #3912! ‘ 2 -r -21 mt?“ For: [>0 ...
View Full Document

{[ snackBarMessage ]}