rpp2010-rev-bbang-cosmology - 19 Big-Bang cosmology 1 19...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
19. Big-Bang cosmology 1 19. BIG-BANG COSMOLOGY Revised September 2009 by K.A. Olive (University of Minnesota) and J.A. Peacock (University of Edinburgh). 19.1. Introduction to Standard Big-Bang Model The observed expansion of the Universe [1,2,3] is a natural (almost inevitable) result of any homogeneous and isotropic cosmological model based on general relativity. However, by itself, the Hubble expansion does not provide sufficient evidence for what we generally refer to as the Big-Bang model of cosmology. While general relativity is in principle capable of describing the cosmology of any given distribution of matter, it is extremely fortunate that our Universe appears to be homogeneous and isotropic on large scales. Together, homogeneity and isotropy allow us to extend the Copernican Principle to the Cosmological Principle, stating that all spatial positions in the Universe are essentially equivalent. The formulation of the Big-Bang model began in the 1940s with the work of George Gamow and his collaborators, Alpher and Herman. In order to account for the possibility that the abundances of the elements had a cosmological origin, they proposed that the early Universe which was once very hot and dense (enough so as to allow for the nucleosynthetic processing of hydrogen), and has expanded and cooled to its present state [4,5]. In 1948, Alpher and Herman predicted that a direct consequence of this model is the presence of a relic background radiation with a temperature of order a few K [6,7]. Of course this radiation was observed 16 years later as the microwave background radiation [8]. Indeed, it was the observation of the 3 K background radiation that singled out the Big-Bang model as the prime candidate to describe our Universe. Subsequent work on Big-Bang nucleosynthesis further conFrmed the necessity of our hot and dense past. (See the review on BBN—Sec. 20 of this Review for a detailed discussion of BBN.) These relativistic cosmological models face severe problems with their initial conditions, to which the best modern solution is inflationary cosmology, discussed in Sec. 19.3.5. If correct, these ideas would strictly render the term ‘Big Bang’ redundant, since it was Frst coined by Hoyle to represent a criticism of the lack of understanding of the initial conditions. 19.1.1. The Robertson-Walker Universe : The observed homogeneity and isotropy enable us to describe the overall geometry and evolution of the Universe in terms of two cosmological parameters accounting for the spatial curvature and the overall expansion (or contraction) of the Universe. These two quantities appear in the most general expression for a space-time metric which has a (3D) maximally symmetric subspace of a 4D space-time, known as the Robertson-Walker metric: ds 2 = dt 2 R 2 ( t ) · dr 2 1 kr 2 + r 2 ( 2 +sin 2 θdφ 2 ) ¸ . (19 . 1) Note that we adopt c = 1 throughout. By rescaling the radial coordinate, we can choose the curvature constant k to take only the discrete values +1, 1, or 0 corresponding to closed, open, or spatially flat geometries. In this case, it is often more convenient to
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 06/07/2011 for the course PHYS 4132 taught by Professor Kutter during the Spring '11 term at University of Florida.

Page1 / 32

rpp2010-rev-bbang-cosmology - 19 Big-Bang cosmology 1 19...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online