{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

rpp2010-rev-dark-matter - 22 Dark matter 1 22 DARK MATTER...

Info icon This preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
22. Dark matter 1 22. DARK MATTER Revised September 2009 by M. Drees (Bonn University) and G. Gerbier (Saclay, CEA). 22.1. Theory 22.1.1. Evidence for Dark Matter : The existence of Dark ( i.e. , non-luminous and non-absorbing) Matter (DM) is by now well established. The earliest [1], and perhaps still most convincing, evidence for DM came from the observation that various luminous objects (stars, gas clouds, globular clusters, or entire galaxies) move faster than one would expect if they only felt the gravitational attraction of other visible objects. An important example is the measurement of galactic rotation curves. The rotational velocity v of an object on a stable Keplerian orbit with radius r around a galaxy scales like v ( r ) M ( r ) /r , where M ( r ) is the mass inside the orbit. If r lies outside the visible part of the galaxy and mass tracks light, one would expect v ( r ) 1 / r . Instead, in most galaxies one finds that v becomes approximately constant out to the largest values of r where the rotation curve can be measured; in our own galaxy, v 220 km / s at the location of our solar system, with little change out to the largest observable radius. This implies the existence of a dark halo , with mass density ρ ( r ) 1 /r 2 , i.e. , M ( r ) r ; at some point ρ will have to fall off faster (in order to keep the total mass of the galaxy finite), but we do not know at what radius this will happen. This leads to a lower bound on the DM mass density, Ω DM > 0 . 1, where Ω X ρ X crit , ρ crit being the critical mass density ( i.e. , Ω tot = 1 corresponds to a flat Universe). The observation of clusters of galaxies tends to give somewhat larger values, Ω DM 0 . 2. These observations include measurements of the peculiar velocities of galaxies in the cluster, which are a measure of their potential energy if the cluster is virialized; measurements of the X-ray temperature of hot gas in the cluster, which again correlates with the gravitational potential felt by the gas; and—most directly—studies of (weak) gravitational lensing of background galaxies on the cluster. A particularly compelling example involves the bullet cluster (1E0657-558) which recently (on cosmological time scales) passed through another cluster. As a result, the hot gas forming most of the clusters’ baryonic mass was shocked and decelerated, whereas the galaxies in the clusters proceeded on ballistic trajectories. Gravitational lensing shows that most of the total mass also moved ballistically, indicating that DM self–interaction are indeed weak [2]. The currently most accurate, if somewhat indirect, determination of Ω DM comes from global fits of cosmological parameters to a variety of observations; see the Section on Cosmological Parameters for details. For example, using measurements of the anisotropy of the cosmic microwave background (CMB) and of the spatial distribution of galaxies, Ref. 3 finds a density of cold, non–baryonic matter Ω nbm h 2 = 0 . 110 ± 0 . 006 , (22 . 1) where h is the Hubble constant in units of 100 km/(s · Mpc). Some part of the baryonic matter density [3], Ω b h 2 = 0 . 0227 ± 0 . 0006 , (22 .
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern