rpp2010-rev-dark-matter

rpp2010-rev-dark-matter - 22. Dark matter 1 22. DARK MATTER...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 22. Dark matter 1 22. DARK MATTER Revised September 2009 by M. Drees (Bonn University) and G. Gerbier (Saclay, CEA). 22.1. Theory 22.1.1. Evidence for Dark Matter : The existence of Dark ( i.e. , non-luminous and non-absorbing) Matter (DM) is by now well established. The earliest [1], and perhaps still most convincing, evidence for DM came from the observation that various luminous objects (stars, gas clouds, globular clusters, or entire galaxies) move faster than one would expect if they only felt the gravitational attraction of other visible objects. An important example is the measurement of galactic rotation curves. The rotational velocity v of an object on a stable Keplerian orbit with radius r around a galaxy scales like v ( r ) p M ( r ) /r , where M ( r ) is the mass inside the orbit. If r lies outside the visible part of the galaxy and mass tracks light, one would expect v ( r ) 1 / r . Instead, in most galaxies one finds that v becomes approximately constant out to the largest values of r where the rotation curve can be measured; in our own galaxy, v 220 km / s at the location of our solar system, with little change out to the largest observable radius. This implies the existence of a dark halo , with mass density ( r ) 1 /r 2 , i.e. , M ( r ) r ; at some point will have to fall off faster (in order to keep the total mass of the galaxy finite), but we do not know at what radius this will happen. This leads to a lower bound on the DM mass density, DM > . 1, where X X / crit , crit being the critical mass density ( i.e. , tot = 1 corresponds to a at Universe). The observation of clusters of galaxies tends to give somewhat larger values, DM . 2. These observations include measurements of the peculiar velocities of galaxies in the cluster, which are a measure of their potential energy if the cluster is virialized; measurements of the X-ray temperature of hot gas in the cluster, which again correlates with the gravitational potential felt by the gas; andmost directlystudies of (weak) gravitational lensing of background galaxies on the cluster. A particularly compelling example involves the bullet cluster (1E0657-558) which recently (on cosmological time scales) passed through another cluster. As a result, the hot gas forming most of the clusters baryonic mass was shocked and decelerated, whereas the galaxies in the clusters proceeded on ballistic trajectories. Gravitational lensing shows that most of the total mass also moved ballistically, indicating that DM selfinteraction are indeed weak [2]. The currently most accurate, if somewhat indirect, determination of DM comes from global fits of cosmological parameters to a variety of observations; see the Section on Cosmological Parameters for details. For example, using measurements of the anisotropy of the cosmic microwave background (CMB) and of the spatial distribution of galaxies, Ref. 3 finds a density of cold, nonbaryonic matterRef....
View Full Document

This note was uploaded on 06/07/2011 for the course PHYS 4132 taught by Professor Kutter during the Spring '11 term at University of Florida.

Page1 / 14

rpp2010-rev-dark-matter - 22. Dark matter 1 22. DARK MATTER...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online