HW10-solutions-1

# HW10-solutions-1 - zakaria(mmz255 – HW10 – gilbert...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: zakaria (mmz255) – HW10 – gilbert – (55485) 1 This print-out should have 17 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. 001 10.0 points Find the domain of the function f ( x, y ) = ln(6- x 2- 3 y 2 ) . 1. braceleftBig ( x, y ) : 1 6 x 2 + 1 2 y 2 > 1 bracerightBig 2. braceleftBig ( x, y ) : 1 3 x 2 + 1 6 y 2 > 1 bracerightBig 3. braceleftBig ( x, y ) : 1 3 x 2 + 1 6 y 2 < 1 bracerightBig 4. braceleftBig ( x, y ) : 1 6 x 2 + 1 2 y 2 < 1 bracerightBig correct 5. braceleftBig ( x, y ) : 1 3 x 2 + 1 6 y 2 ≤ 1 bracerightBig 6. braceleftBig ( x, y ) : 1 6 x 2 + 1 2 y 2 ≤ 1 bracerightBig Explanation: Since ln x is defined only for x > 0, the function f ( x, y ) = ln(6- x 2- 3 y 2 ) is defined only for braceleftBig ( x, y ) : 1 6 x 2 + 1 2 y 2 < 1 bracerightBig . keywords: function several variables, ln func- tion, domain 002 10.0 points Find the domain of the function f ( x, y ) = radicalbig x 2 + 4 y 2- 7 . 1. braceleftBig ( x, y ) : 1 7 x 2 + 4 7 y 2 ≥ 1 bracerightBig correct 2. braceleftBig ( x, y ) : 1 4 x 2 + 1 7 y 2 > 1 bracerightBig 3. braceleftBig ( x, y ) : 1 4 x 2 + 1 7 y 2 ≥ 1 bracerightBig 4. braceleftBig ( x, y ) : 1 7 x 2 + 4 7 y 2 < 1 bracerightBig 5. braceleftBig ( x, y ) : 1 4 x 2 + 1 7 y 2 < 1 bracerightBig 6. braceleftBig ( x, y ) : 1 7 x 2 + 4 7 y 2 > 1 bracerightBig Explanation: Since √ x is defined only for x ≥ 0, the function f ( x, y ) = radicalbig x 2 + 4 y 2- 7 is defined only for braceleftBig ( x, y ) : 1 7 x 2 + 4 7 y 2 ≥ 1 bracerightBig . keywords: function several variables, square root function, domain 003 10.0 points A rectangular piece of cardboard is 3 times as long as it is wide. If the length of the shorter side is y inches and an open box is constructed by cutting equal squares of side- length x inches from the corners of the piece of cardboard and turning up the sides as shown in the figure x x x x x x x x Determine the volume, V , of the box as a function of x and y . zakaria (mmz255) – HW10 – gilbert – (55485) 2 1. V ( x, y ) = 3 xy 2- 8 x 2 y- 4 x 3 cu. ins 2. V ( x, y ) = 8 xy 2 + 3 x 2 y- 4 x 3 cu. ins 3. V ( x, y ) = 3 xy 2- 8 x 2 y +4 x 3 cu. ins cor- rect 4. V ( x, y ) = 8 xy 2- 3 x 2 y + 2 x 3 cu. ins 5. V ( x, y ) = 3 xy 2 + 8 x 2 y + 2 x 3 cu. ins 6. V ( x, y ) = 8 xy 2 + 3 x 2 y- 2 x 3 cu. ins Explanation: The rectangular sheet of cardboard will have dimensions y × 3 y . Thus the length...
View Full Document

## This note was uploaded on 06/05/2011 for the course MATH 408 D taught by Professor Gilbert during the Spring '11 term at University of Texas.

### Page1 / 8

HW10-solutions-1 - zakaria(mmz255 – HW10 – gilbert...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online