6a - E nergy Balance Lecture outline L ecture Closedsystem...

Info iconThis preview shows pages 1–9. Sign up to view the full content.

View Full Document Right Arrow Icon
Energy Balance
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Lecture outline Theoretical Background - Energy Hypothetical process paths Specific heat capacity Closed system Open system Phase change operation
Background image of page 2
Theory background Law of conservation of energy Energy input = Energy output + losses Heat capacity For Ideal gas, c p -c v = R The ratio of c p /c v = γ = 1.4 Heat capacity at constant pressure for any gas is Cp = a + bT + cT 2 + dT 3 Where a, b, c and d are constants Heat capacity of gas mixture is C pm = Σx i c pi Where x i = mole fraction of component C pi = molar heat capacity of component
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Enthalpy changes with chemical reaction ∆H R ° - standard heat of reaction at 25°C ∆H f ° - standard heat of formation at 25°C ∆H c ° - standard heat of combustion at 25°C ∆H R ° = Σ∆H f ° (products) - Σ∆H f ° (reactants) ∆H R ° - +ve – endothermic reaction; ∆H R ° - -+ve – exothermic reaction Effect of temperature on heat of reaction ∆H R = ∆H° (products) + ∆H R ° - ∆H° (reactants) ∆H R – Heat of reaction at operating conditions ∆H R ° - Standard heat of reaction at 25°C ∆H° (products) – Enthalpy of products over 25°C ∆H° (reactants) - Enthalpy of reactants over 25°C Standard heat of reaction from heats of combustion ∆H R ° = Σ∆H c ° (reactants) - Σ∆H c ° (products)
Background image of page 4
Enthalpy change in reactions q =  ∆H = Σ ∆H p + Σ ∆H R ° - Σ ∆H R Σ ∆H p – Enthalpy of products at 25 °C ∆H R - Enthalpy of reactants at 25 For adiabatic reaction q = 0 Clausius Claypeyron equation Where P and P 0 – Vapor pressure at T and T 0 T and T 0 – absolute temperature - Molar latent heat of vaporization - = T T R P P 1 1 ln 0 0 λ
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
What we learnt so far… far… General energy balance equation:  Closed systems: E k   E p   =   Q  –  W Open systems: H  +  E k   E p   =   Q  –  W s When work ( W  or  W s ),  E k   E p  are neglected : Closed systems:  Q = Σ out n f Ū f  –  Σ in n Ū i Open systems:  Q  = Σ out n f   Ĥ f  –  Σ in n Ĥ i  Energy balance using tabulated  Ū  Ĥ  (e.g. steam  tables) Q: What if tabulated data are not found? 
Background image of page 6
Hypothetical process path Ū  &  Ĥ  are  state properties  – their values depends on  the state of the system: Mainly on  T  & state of  aggregation (solid, liquid or gas) Rarely on pressure Ū  &  Ĥ  are calculated  based on 5 hypothetical path: P  @ constant  T  & state of aggregation (this lecture) @ constant  P  & state of aggregation (this lecture) Phase change @ constant  T  &  P  (this lecture) Mixing/separation of 2 or more substances @ constant  T  &  P   (omit) Chemical reaction @ constant  T  and  P  
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
T @ constant P P Sensible heat : heat that must be transferred to  raise/lower the  T
Background image of page 8
Image of page 9
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 06/06/2011 for the course CHEM 3040 taught by Professor Reddy during the Spring '10 term at Taylor's.

Page1 / 31

6a - E nergy Balance Lecture outline L ecture Closedsystem...

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online