{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Julia Food Booth Graph

Julia Food Booth Graph - =\$0.75X1 1.10X2 1.25X3 Subjectto...

This preview shows pages 1–3. Sign up to view the full content.

Maximize Total profit Z = \$0.75X1 + 1.10X2 +1.25X3 Subject to: 0.75X1+0.50X2+1.00X3<=\$1500 (Budget) 32.67X1 + 16X2 +25X3 <= 55,296 (In-square Of Oven Space) X1-X2 - X3>=0 (at least as many slices of pizza as hot dogs and barbeque sandwiches combined) X2-2X3>=0 (at least twice as many hot dogs as barbeque sandwiches) X1, X2, X3 >= 0 (Non negativity constraint) MODEL: X1 X2 X3  \$0.75   \$1.10   \$1.25  Target cell(Z) Decision Variables  SUMPRODUCT(B12:D12,B13:D13)  Constraints Constraint LHS Constraint RHS Budget  \$0.75   \$0.50   \$1.00  SUMPRODUCT(\$B\$32:\$D\$32,B15:D15) <=  \$1,500  Oven space 32.67 16 25 SUMPRODUCT(\$B\$32:\$D\$32,B16:D16) <=  55,296  1 -1 -1 SUMPRODUCT(\$B\$32:\$D\$32,B17:D17) >= 0 0 1 -2 SUMPRODUCT(\$B\$32:\$D\$32,B18:D18) >= 0 After setting up the problem as shown above, Open Tools->solver and enter appropriate values for cells. Press solve after entering all the values. No of Pizza slices  constraint No of hotdogs and   barbeque  sandwiches

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
X1 X2 X3  \$0.75   \$1.10   \$1.25  1136.22 1136.22 0  \$2,102.01  Budget  \$0.75   \$0.50   \$1.00  1420.27 <=
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}