{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

SlidingPendulum

# SlidingPendulum - EGM 3400/3401 Sliding pendulum dynamics...

This preview shows pages 1–2. Sign up to view the full content.

Sheet1 Page 1 % EGM 3400/3401 Sliding pendulum dynamics example problem % Based on Chapter 19 in textbook % The pendulum is modeled as a rod with 2 DOFs %-------------------------------------------------------------------- % Set up problem AutoOverwrite On NewtonianFrame N % Nx> to the right, Ny> up, and Nz> = Nx> x Ny> RigidBody B Point Q Constant m,r,l,g Variable x'',theta'',Fy %-------------------------------------------------------------------- % Rotation matrices B.RotateZ( N, theta ) % B rotates "about +z" in N by theta %-------------------------------------------------------------------- % Angular velocities w_B_N> = theta'*Bz> %-------------------------------------------------------------------- % Linear velocities v_No_N> = 0> p_No_Q> = x*Nx> v_Q_N> = Dt( p_No_Q>, N ) p_Q_Bo> = -0.5*l*By> v_Bo_N> = v_Q_N> + Cross( w_B_N>, p_Q_Bo> ) Express( v_Bo_N>, N ) %-------------------------------------------------------------------- % Reaction forces on Q and gravity force on Bo F_Q> = Fy*Ny> F_Bo> = -m*g*Ny> Express( p_Q_Bo>, N ) M_B_Q> = Cross( p_Q_Bo>, F_Bo> ) %-------------------------------------------------------------------- % Linear momentum principle for Nx> direction L_B_N> = m*v_Bo_N> D_L_B_N> = Dt( L_B_N>, N ) Zero_Lin> = F_Q> + F_Bo> - D_L_B_N> Zero[1] = Dot( Zero_Lin>, Nx> ) %--------------------------------------------------------------------

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}