ioniccond_lect26

ioniccond_lect26 - Ionic Conductivity and Solid...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Ionic Conductivity and Solid Electrolytes I: The Basics Chemistry 754 Solid State Chemistry Lecture #26 June 2, 2003 Chem 754 - Solid State Chemistry A.R. West "Solid State Chemistry and it's Applications", Chapter 13, Wiley (1984) C.N.R Rao and J. Gopalakrishnan "New Directions in Solid State Chemistry", pp. 409-416, Cambridge 409(1997) A. Manthiram & J. Kim "Low Temperature Synthesis of Insertion Oxides for Lithium Batteries", Chem. Mater. 10, 2895-2909 (1998). 10, 2895J.C. Boivin & G. Mairesse "Recent Material Developments in Fast Oxide Ion Conductors", Chem. Mater. 10, 2870-2888 (1998). 10, 2870Craig Fisher (Japan Fine Ceramic Institute) http://www.spice.or.jp/~fisher/sofc.html Chem 754 - Solid State Chemistry References 1 Solid Electrolytes Electrolyte - A substance that conducts electricity through the movement of ions. Most electrolytes are solutions or molten salts, but some electrolytes are solids and some of those are crystalline solids. solids. Different names are given to such materials: Solid Electrolyte Fast Ion Conductor Superionic Conductor Over the next two lectures we will be looking at materials which behave as solid electrolytes, their properties and applications. Chem 754 - Solid State Chemistry Ionic vs. Electronic Conductivity Let's begin by comparing the properties of ionic conductors with the conventional electronic conductivity of metals. Metals Conductivity Range = 10 S/cm < < 105 S/cm Electrons carry the current Conductivity Increases linearly as temperature decreases (phonon scattering decreases as T ) Conductivity Range = 10-3 S/cm < < 10 S/cm Ions carry the current Conductivity decreases exponentially as temperature decreases (activated transport) Chem 754 - Solid State Chemistry Solid Electrolytes 2 Defects In order for an ion to move through a crystal it must hop from an an occupied site to a vacant site. Thus ionic conductivity can only y onl occur if defects are present. The two simplest types of point defects are Schottky and Frenkel defects. Schottky Defect (i.e. NaCl) Na+ + Cl- Vna + VCl Frenkel Defect (i.e. AgCl) Ag+ VAg+ Ag+interstitial Chem 754 - Solid State Chemistry Ion Migration (Schottky Defects) Consider the movement of Na+ ions in NaCl via vacancies originating from Schottky defects. Note that the Na+ ion must squeeze through the lattice, inducing significant local distortion/relaxation. This is one factor that limits the mobility mobility of ions. A second factor that contributes is the relatively high high probability that the ion will jump back to it's original position, position, leading to no net ionic migration. Na Cl Cl Na Cl Na Cl E To get across the unit cell into the vacancy the Na+ ion must hop through the center of the cube where it squeezes by 4 Cl- and 2 Na+. The energy of this "transition state" will determine the ease - Solid State Chemistry Chem 754 of migration. 3 Ion Migration (Frenkel Defects) The Frenkel defects in AgCl can migrate via two mechanisms. Ag Cl Ag1 Cl Ag Cl Ag2 Ag Cl Ag Ag Cl Cl Ag Ag Cl Cl Cl Ag Ag1 Ag2 Ag Cl Cl Cl Ag Direct Interstitial Jump Ag Cl Ag1 Cl Ag Cl Ag2 Ag Cl Ag Ag Cl Cl Ag Ag Cl Cl Cl Ag Ag2 Ag1 Ag Cl Cl Cl Ag Interstitialcy Mechanism Chem 754 - Solid State Chemistry Applications of Ionic Conductors There are numerous practical applications, all based on electochemical cells, where ionic conductivity is needed and it is advantageous/necessary to use solids for all components. Batteries e- Useful Power Fuel Cells Gas Sensors Electrolyte Anode Cathode In such cells ionic conductors are needed for either the electrodes, the electrolyte or both. Electrolyte (Material needs to be an electrical insulator to prevent short circuit) Electrode (Mixed ionic and electronic conductivity is needed to avoid open circuit) Chem 754 - Solid State Chemistry 4 Schematic of a Solid Oxide Fuel Cell Chem 754 - Solid State Chemistry Taken from http://www.spice.or.jp/~fisher/sofc.html Schematic of Rechargable Li Battery Taken from A. Manthiram & J. Kim "Low Temperature Synthesis of Insertion Oxides for Lithium Batteries", Chem. Mater. 10, 2895-2909 (1998). 10, 2895- Chem 754 - Solid State Chemistry 5 Solid Electrolyte Materials Ag+ Ion Conductors Na+ Ion Conductors Li+ Ion Conductors LiCoO2, LiNiO2 LiMnO2 AgI & RbAg4I5 Sodium -Alumina (i.e. NaAl11O17, Na2Al16O25) NASICON (Na3Zr2PSi2O12) O2- Ion Conductors F- Ion Conductors Cubic stabilized ZrO2 (YxZr1-xO2-x/2, CaxZr1-xO2-x) -Bi2O3 Defect Perovskites (Ba2In2O5, La1-xCaxMnO3-y, ...) PbF2 & AF2 (A = Ba, Sr, Ca) Ba, Sr, Chem 754 - Solid State Chemistry Stabilized ZrO2 is not a good ionic conductor at low temperature. -AgI & RbAg4I5 have ionic conductivities comparable to conc. H2SO4 Chem 754 - Solid Taken from "Solid State Chemistry and it's Applications"State Chemistry by Anthony West 6 General Characteristics: Solid Electrolytes 1. A large number of the ions of one species should be mobile. This requires a large number of empty sites, either vacancies or accessible interstitial sites. Empty sites are needed for ions to move through the lattice. 2. The empty and occupied sites should have similar potential energies with a low activation energy barrier for jumping between between neighboring sites. High activation energy decreases carrier mobility, very stable sites (deep potential energy wells) lead to carrier localization. localization. 3. The structure should have solid framework, preferable 3D, permeated by open channels. The migrating ion lattice should be "molten", so that a solid framework of the other ions is needed in order to prevent the entire material from melting. 4. The framework ions (usually anions) should be highly polarizable. polarizable. Such ions can deform to stabilize transition state geometries Chem 754 - Solid State of the migrating ion through covalent interactions. Chemistry Molten Sublattice (1/2 Melting) In the best ionic conductors one ion becomes so mobile that for all intensive purposes those ions are in a "molten" state. This behavior can be seen in part from the entropies of the observed phase transitions, where the Ag (and F respectively) sublattice melts prematurely. (poor ionic conductor) -AgI -AgI (excellent ionic conductor) T = 146 C, S = 14.5 J/mol-K J/mol-AgI molten AgI S = 11.3 J/mol-K J/molCompare with the an entropy of melting of 24 J/mol-K for NaCl. J/molNaCl. solid PbF2 molten PbF2 S = 16.4 J/mol-K J/molCompare with the an entropy of melting of 35 J/mol-K for MgF2 J/molChem 754 - Solid State Chemistry 7 Ag+ Ion Conductors Stable below 146 C Wurtzite Structure (tetrahedral coordination) = 0.001 S/cm 0.0001 S/cm Stable above 146 C BCC Arrangement of I-, molten/ disordered Ag+ ~ 1 S/cm, EA=0.05 eV Conductivity decreases on melting Highest known conductivity at room temperature BCC Arrangement of I-, molten/disordered Ag+ ~ 0.25 S/cm (25 C), EA=0.07 eV Chem 754 - Solid State Chemistry -AgI -AgI RbAg4I5 Na+ Ion Conductors FCC like packing of oxygen Every fifth layer of the O2- ions are missing, Na+ ions present. These layers are sandwiched between spinel blocks. 2D ionic conductor NaAl7O11 (Na2O.nAl2O3) Framework of corner sharing ZrO6 octhahedra and PO4/SiO4 tetrahedra Na+ ions occupy trigonal prismatic and octahedral sites, of the Na+ sites are empty EA ~ 0.3 eV Na3Zr2PSi2O12 (NASICON) Chem 754 - Solid State Chemistry 8 ...
View Full Document

This note was uploaded on 06/11/2011 for the course CHEM 101 taught by Professor Stegemiller during the Spring '07 term at Ohio State.

Ask a homework question - tutors are online