122ch14c - 26 14.35) 27 14.36) 28 14.36) (cont.) 29 14.37)...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 26 14.35) 27 14.36) 28 14.36) (cont.) 29 14.37) 14.40) N2O5 (g) r = k [N2O5] v 2 NO2 (g) + 1/2 O2 (g) 1st order with respect to [N2O5], k = 6.82 x 10!3 s!1 at 70 °C Start with 0.0250 mol of N2O5(g) in 2.0-L container 0.0250 mol [N2O5]0 = --------------- = 0.0125 M = 0.012 M (rounding even) 2.0 L a) Use first-order integrated rate equation (three ways to write it): ln[A]t = !k t + ln[A]0 [A]t ln (-------) = !k t [A]0 [A]t = [A]0 e!k t !kt [N2O5]300s = [N2O5]0 e !3 !1 = (0.0125 M) e!(6.82 x 10 s )(300 s) = 1.6156 x 10!3 M moles = (1.6156 x 10!3 M)(2.0 L) = 3.23 x 10!3 M = 3.2 x 10!3 M 30 14.40) (cont.) b) Want time it takes for N2O5 to decrease to 0.010 mol 0.010 mol [N2O5]t = --------------- = 0.0050 M 2.0 L [N2O5]0 = 0.0125 M [N2O5]t ln (-----------) = !k t [N2O5]0 0.0050 M ln (--------------) = !(6.82 x 10!3 s!1) * t 0.0125 M t = 134.35 s = 2.24 min = 2.2 min c) 1st order, 0.693 0.693 t1/2 = -------- = -------------------- = 101.6 s = 102 s or 1.69 min k 6.82 x 10!3 s!1 14.43) Given a reaction, A(aq) ---> B(aq) and the data in problem 14.15 determine the order of the reaction (by making the appropriate graphs - integrated rate eqn), rate constant, and half-life. * continued on next page * 31 14.43) (cont.) 32 14.46) 33 14.48) a) In the reaction, H + Cl -----> HCl, because the reactants are atoms and spherical the orientation is less important. All collision orientations are equally effective. b) *** continued on next page *** 34 14.48) b) (cont.) 35 14.50) 14.52) 36 14.53) 37 14.53) (cont.) 38 14.55) k2 Ea 1 1 ln (-----) = ------ (---- - ----) k1 R T1 T2 or k1 Ea 1 1 ln (-----) = ------ (---- - ----) k2 R T2 T1 (Notes) (Book) The two eqns are equivalent (just look different). T in KELVIN, R = 8.314 J/molCK k1 = 2.75 x 10!2 s!1 T1 = 20 °C = 293 K Want the rate constant, k, 60 °C using two different activation energies, Ea. a) k2 = ? at T2 = 60 °C = 333 K when Ea = 75.5 kJ/mol Ea = 75.5 kJ/mol = 75.5 x 103 J/mol (units for Ea must agree with those of R) 75.5 x 103 J/mol 1 1 k2 ln (------) = --------------------- (--------- - ---------) k1 8.314 J/molCK 293 K 333 K k2 ln (------) = 3.7229 k1 (s.f. info is to the right of the decimal in a logarithm) k333 ------- = e3.7229 = 41.385 k293 k333 = k293 (41.385) = (2.75 x 10!2 s!1)(41.385) = 1.138 s!1) = 1.14 s!1 39 14.55) (cont.) b) k2 = ? at T2 = 60 °C = 333 K when Ea = 125 kJ/mol Ea = 125 kJ/mol = 125 x 103 J/mol (units for Ea must agree with those of R) k2 125 x 103 J/mol 1 1 ln (------) = --------------------- (--------- - ---------) k1 8.314 J/molCK 293 K 333 K k2 ln (------) = 6.1637 k1 (s.f. info is to the right of the decimal in a logarithm) k333 ------- = e6.1637 = 475.22 k293 k333 = k293 (475.22) = (2.75 x 10!2 s!1)(475.22) = 13.068 s!1) = 13.1 s!1 NOTE: k at 60 °C (333 K) is greater for the rxn with the larger Ea. k333, 125 kJ 13.1 s!1 -------------- = ----------- = 11.5 k333, 75.5 kJ 1.14 s!1 At 60 °C the k for Ea = 125 kJ/mol (higher Ea) is . 11.5 times greater than k for Ea = 75.5 kJ/mol. This tells us that an inc. in T has a greater effect for the rxn. with the large Ea. 40 14.57) 41 14.59) ...
View Full Document

Ask a homework question - tutors are online