{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Lecture-15-01-h

# Lecture-15-01-h - Lecture Computing Optical Flow...

This preview shows pages 1–5. Sign up to view the full content.

1 Lecture Computing Optical Flow Horn&Schunck Optical Flow 0 ) , , ( = + + = t f dt dx y f dt dx x f dt t y x df brightness constancy eq 0 = + + t y x f v f u f Sequence Image ) , , ( t y x f

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 Horn&Schunck Optical Flow f x y t f x y t f x dx f y dy f t dt ( , , ) ( , , ) = + + + Taylor Series ) , , ( ) , , ( dt t dy y dx x f t y x f + + + = brightness constancy eq 0 = + + t y x f v f u f 0 = + + dt f dy f dx f t y x Interpretation of optical flow eq y t y x f f u f f v - - = d f f f t x y = + 2 2 d=normal flow p=parallel flow Equation of st.line 0 = + + t y x f v f u f
3 Horn&Schunck (contd) variational calculus {( ) ( )} + + + + + + f u f v f u u v v dxdy x y t x y x y 2 2 2 2 2 l ( ) ( ) ( ) (( ) f u f v f f u f u f v f f v x y t x x y t y + + + = + + + = l l D D 2 2 0 0 ( ) ( ) ( ) (( ) f u f v f f u u f u f v f f v v x y t x av x y t y av + + + - = + + + - = l l 0 0 u u f P D v v f P D av x av y = - = - P f u f v f D f f x av y av t x y = + + = + + l 2 2 discrete version min yy xx u u u + = D 2 Algorithm-1 • k=0 • Initialize u

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 3

Lecture-15-01-h - Lecture Computing Optical Flow...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online