quiz_08ode_euler(1)

# quiz_08ode_euler(1) - Multiple-Choice Test Chapter 08.02...

This preview shows pages 1–3. Sign up to view the full content.

08.02.1 Multiple-Choice Test Chapter 08.02 Euler’s Method 1. To solve the ordinary differential equation ( ) 5 0 , sin 5 3 2 = = + y x y dx dy by Euler’s method, you need to rewrite the equation as (A) ( ) 5 0 , 5 sin 2 = = y y x dx dy (B) ( ) ( ) 5 0 , 5 sin 3 1 2 = = y y x dx dy (C) ( ) 5 0 , 3 5 cos 3 1 3 = = y y x dx dy (D) ( ) 5 0 , sin 3 1 = = y x dx dy 2. Given ( ) 5 3 . 0 , sin 5 3 2 = = + y x y dx dy and using a step size of 3 . 0 = h , the value of ( ) 9 . 0 y using Euler’s method is most nearly (A) 318 . 35 (B) 458 . 36 (C) 91 . 658 (D) 05 . 669 3. Given ( ) 5 3 . 0 , 3 1 . 0 = = + y e y dx dy x and using a step size of 3 . 0 = h , the best estimate of ( ) 9 . 0 dx dy using Euler’s method is most nearly (A) 37319 . 0 (B) 36288 . 0 (C) 35381 . 0 (D) 34341 . 0

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document