quiz_sle_gaussianelimination

quiz_sle_gaussianelimination - Multiple Choice Test...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Gaussian Elimination 1. The goal of forward elimination steps in Naïve Gauss elimination method is to reduce the coefficient matrix to a (an) _____________ matrix. (A) diagonal (B) identity (C) lower triangular (D) upper triangular 2. Division by zero during forward elimination steps in Naïve Gaussian elimination of the set of equations [A][X]=[C] implies the coefficient matrix [A] is (A) invertible (B) nonsingular (C) not determinable to be singular or nonsingular (D) singular 3. Using a computer with four significant digits with chopping, Naïve Gauss elimination solution to 23 . 47 123 . 7 239 . 6 12 . 58 23 . 55 0030 . 0 2 1 2 1 = = + x x x x is (A) x 1 = 26.66; x 2 = 1.051 (B) x 1 = 8.769; x 2 = 1.051 (C) x 1 = 8.800; x 2 = 1.000 (D) x 1 = 8.771; x 2 = 1.052 4. Using a computer with four significant digits with chopping, Gaussian elimination with partial pivoting solution to 23 . 47 123 . 7 239 . 6 12 . 58 23 . 55 0030 . 0 2
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 3

quiz_sle_gaussianelimination - Multiple Choice Test...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online