Lecture 34+35

Lecture 34+35 - More poles zeros equalizers Spring 2011 ECE...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Spring 2011 ECE 2100, Cornell Univ. Prof. Molnar 1 Lectures 34+35 More poles, zeros, equalizers
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Spring 2011 ECE 2100, Cornell Univ. Prof. Molnar 2 Example: equalizers • Assume stuck with RC: – Time constant = RC – Loses gain at ω = 1/RC • Transfer function? – 1 pole at s =-1/RC: • Idea: build a circuit to cancel the pole: – Eliminate time constant – Increase bandwidth Z F = R F Z 1 =(1/sC 1 )||R 1 V 1 V in - + R 1 C 1 Vout R C Vin s RC RC s Vin s Vout + = 1 1 ) ( ) (
Background image of page 2
Spring 2011 ECE 2100, Cornell Univ. Prof. Molnar 3 Concept: equalizers + - = + - = 1 1 1 1 1 1 1 1 C R s C R C sR R R Vin Veq F F What is the transfer function? Veq = -Vin(Z F /Z 1 ) – Z F = R F – Z 1 = R 1 ||1/sC 1 =R 1 /(1+sR 1 C 1 ) Zero at -1/(R 1 C 1 ) – Choose R 1 C 1 to cancel pole Z F = R F Z 1 =(1/sC 1 )||R 1 V 1 V in - + R 1 C 1 Z F = R F Z 1 =(1/sC 1 )||R 1 V 1 V in - + R 1 C 1 Vout R C V eq ( 29 1 1 1 1 1 1 1 1 R R RC C R RC s RC C R s C R Veq Vout Vin Veq F F F - = - = + + - = V eq
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Spring 2011 ECE 2100, Cornell Univ. Prof. Molnar 4 Poles in resonant systems Over damped ( α > ω o ) b two distinct, real poles Critically damped (
Background image of page 4
Image of page 5
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 11

Lecture 34+35 - More poles zeros equalizers Spring 2011 ECE...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online