HW03-solutions - Munoz (gm7794) HW03 Radin (54915) 1 This...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Munoz (gm7794) HW03 Radin (54915) 1 This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. 001 10.0 points Rewrite the sum 2 n parenleftBig 4 + 5 n parenrightBig 2 + 2 n parenleftBig 4 + 10 n parenrightBig 2 + . . . + 2 n parenleftBig 4 + 5 n n parenrightBig 2 using sigma notation. 1. n summationdisplay i = 1 2 n parenleftBig 4 i + 5 i n parenrightBig 2 2. n summationdisplay i = 1 5 n parenleftBig 4 i + 2 i n parenrightBig 2 3. n summationdisplay i = 1 2 n parenleftBig 4 + 5 i n parenrightBig 2 correct 4. n summationdisplay i = 1 5 n parenleftBig 4 + 2 i n parenrightBig 2 5. n summationdisplay i = 1 2 i n parenleftBig 4 + 5 i n parenrightBig 2 6. n summationdisplay i = 1 5 i n parenleftBig 4 + 2 i n parenrightBig 2 Explanation: The terms are of the form 2 n parenleftBig 4 + 5 i n parenrightBig 2 , with i = 1 , 2 , . . . , n . Consequently in sigma notation the sum becomes n summationdisplay i = 1 2 n parenleftBig 4 + 5 i n parenrightBig 2 . 002 10.0 points The graph of a function f on the interval [0 , 10] is shown in 2 4 6 8 10 2 4 6 8 Estimate the area under the graph of f by dividing [0 , 10] into 10 equal subintervals and using right endpoints as sample points. 1. area 55 2. area 56 3. area 53 4. area 54 5. area 52 correct Explanation: With 10 equal subintervals and right end- points as sample points, area braceleftBig f (1) + f (2) + . . . f (10) bracerightBig 1 , since x i = i . Consequently, area 52 , reading off the values of f (1) , f (2) , . . . , f (10) from the graph of f . 003 10.0 points Decide which of the following regions has area = lim n n summationdisplay i = 1 4 n sin i 4 n Munoz (gm7794) HW03 Radin (54915) 2 without evaluating the limit. 1. braceleftBig ( x, y ) : 0 y sin 2 x, x 4 bracerightBig 2. braceleftBig ( x, y ) : 0 y sin 4 x, x 8 bracerightBig 3. braceleftBig ( x, y ) : 0 y sin x, x 8 bracerightBig 4. braceleftBig ( x, y ) : 0 y sin x, x 4 bracerightBig correct 5. braceleftBig ( x, y ) : 0 y sin 3 x, x 4 bracerightBig 6. braceleftBig ( x, y ) : 0 y sin 3 x, x 8 bracerightBig Explanation: The area under the graph of y = f ( x ) on an interval [ a, b ] is given by the limit lim n n summationdisplay i = 1 f ( x i ) x when [ a, b ] is partitioned into n equal subin- tervals [ a, x 1 ] , [ x 1 , x 2 ] , . . ., [ x n 1 , x n ] each of length x = ( b- a ) /n . When the area is given by A = lim n n summationdisplay i = 1 4 n sin i 4 n , therefore, we see that f ( x i ) = sin i 4 n , x = 4 n , where in this case x i = i 4 n , f ( x ) = sin x, [ a, b ] = bracketleftBig , 4 bracketrightBig ....
View Full Document

Page1 / 10

HW03-solutions - Munoz (gm7794) HW03 Radin (54915) 1 This...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online