HW06-solutions

# HW06-solutions - Van Ligten(hlv63 – HW06 – Gilbert...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Van Ligten (hlv63) – HW06 – Gilbert – (56650) 1 This print-out should have 19 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. 001 10.0 points Find the most general function f such that f ′ ( x ) = 6 x- 7 √ 9- x 2 . 1. f ( x ) = 6 x + 7 sin − 1 x 3 + C 2. f ( x ) = 3 x 2- 7 sin − 1 x + C 3. f ( x ) = 6 x + 7 3 tan − 1 x + C 4. f ( x ) = 3 x + 7 3 tan − 1 x 3 + C 5. f ( x ) = 3 x 2- 7 3 tan − 1 x 3 + C 6. f ( x ) = 3 x 2- 7 sin − 1 x 3 + C correct Explanation: Since d dx parenleftBig sin − 1 x 3 parenrightBig = 1 √ 9- x 2 , we see that f ( x ) = 3 x 2- 7 sin − 1 x 3 + C with C an arbitrary constant. 002 10.0 points Determine the indefinite integral I = integraldisplay ( 1- x 2 ) − 1 / 2 4 + sin − 1 x dx . 1. I = ln vextendsingle vextendsingle 4 + sin − 1 x vextendsingle vextendsingle + C correct 2. I =- ln vextendsingle vextendsingle 4 + sin − 1 x vextendsingle vextendsingle + C 3. I = 1 2 ln vextendsingle vextendsingle 4 + sin − 1 x vextendsingle vextendsingle + C 4. I = 1 2 ( 4 + sin − 1 x ) 2 + C 5. I =- 1 2 ( 4 + sin − 1 x ) 2 + C 6. I =- ( 4 + sin − 1 x ) 2 + C Explanation: Set u = 4 + sin − 1 x . Then du = 1 √ 1- x 2 dx = ( 1- x 2 ) − 1 / 2 dx , so I = integraldisplay 1 u du = ln vextendsingle vextendsingle 4 + sin − 1 x vextendsingle vextendsingle + C . Consequently, I = ln vextendsingle vextendsingle 4 + sin − 1 x vextendsingle vextendsingle + C . 003 10.0 points Determine the integral I = integraldisplay 1 4- x 1 + x 2 dx . 1. I = 1 2 (2 π- ln4) 2. I = 1 2 (2 π + ln2) 3. I = 2 π- ln4 4. I = 2 π + ln4 5. I = 1 2 (2 π- ln2) correct 6. I = 2 π + ln2 Explanation: Van Ligten (hlv63) – HW06 – Gilbert – (56650) 2 We deal with the two integrals I 1 = integraldisplay 1 4 1 + x 2 dx, I 2 = integraldisplay 1 x 1 + x 2 dx separately. Now d dx tan − 1 x = 1 1 + x 2 , so we see that I 1 = bracketleftBig 4 tan − 1 x bracketrightBig 1 = π . On the the other hand, to evaluate I 2 set u = 1 + x 2 . Then du = 2 x dx , and x = 0 = ⇒ u = 1 , while x = 1 = ⇒ u = 2 . In this case, I 2 = 1 2 integraldisplay 2 1 1 u du = 1 2 bracketleftBig ln u bracketrightBig 2 1 . Consequently, I = 1 2 (2 π- ln2) . keywords: 004 10.0 points Determine the indefinite integral I = integraldisplay 4 t 3 √ 1- t 8 dt . 1. I = radicalbig 1- t 8 + C 2. I = 4 sin − 1 ( t 4 ) + C 3. I = tan − 1 ( t 4 ) + C 4. I = 4 √ 1- t 8 + C 5. I = sin − 1 ( t 4 ) + C correct 6. I = 4 tan − 1 ( t 4 ) + C Explanation: Since integraldisplay 1 √ 1- x 2 dx = sin − 1 x + C , we need to reduce I to this form by changing t . Indeed, set x = t 4 . Then dx = 4 t 3 dt ....
View Full Document

## This note was uploaded on 06/10/2011 for the course M 408 L taught by Professor Cepparo during the Fall '08 term at University of Texas.

### Page1 / 10

HW06-solutions - Van Ligten(hlv63 – HW06 – Gilbert...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online