# 20p5 - % = DT(W_A_E>+W_B_A>,E) % = DT(W_A_E>,A) +

This preview shows page 1. Sign up to view the full content.

Sheet1 Page 1 % Problem 20.5 % This problem is a great example of 2 points fixed on % a rigid body % % Set up problem DIGITS 4 DEGREES ON FRAMES E,A,B POINTS O,P,Q % % Define rotation matrices SIMPROT(A,B,2,37) % % Compute angular kinematics W_A_E>=2*A1> W_B_A>=-4*A2> W_B_E>=W_A_E>+W_B_A> ALF_A_E>=12*A1> ALF_B_A>=13*A2> % % Calculate ALF_B_E using the Million Dollar Formula. % We have W_A_E>, W_B_A>, ALF_A_E>, and ALF_B_A> % available in terms of Ai> unit vectors, and these can % be used to construct ALF_B_E>. % ALF_B_E> = DT(W_B_E>,E) or DT(W_B_E>,B)
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: % = DT(W_A_E>+W_B_A>,E) % = DT(W_A_E>,A) + CROSS(W_A_E>,W_A_E>) + % DT(W_B_A>,A) + CROSS(W_A_E>,W_B_A>) % = ALF_A_E> + ALF_B_A> + CROSS(W_A_E>,W_B_A>) ALF_B_E>=ALF_A_E>+ALF_B_A>+CROSS(W_A_E>,W_B_A>) % % Compute linear kinematics V_O_E>=0> A_O_E>=0> % Point O gives us a starting point where the velocity % and acceleration in E are zero P_O_P>=0.3*A3> P_P_Q>=0.4*B3> V2PTS(E,A,O,P) V2PTS(E,B,P,Q) MAG_V=MAG(V_Q_E>) A2PTS(E,A,O,P) A2PTS(E,B,P,Q) MAG_A=MAG(A_Q_E>)...
View Full Document

## This note was uploaded on 06/13/2011 for the course EML 5215 taught by Professor Staff during the Fall '08 term at University of Florida.

Ask a homework question - tutors are online