Ex7-2 - % Approach 1 p_q_o>=3*a3>

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Sheet1 Page 1 % Ex7-2.al % Set up problem frames a points o,q,r particles p{4} mass p1=1,p2=2,p3=3,p4=4 % Create position vectors needed to form i_o>> from definition p_o_p1>=2*a2> p_o_p2>=4*a1>+2*a2> p_o_p3>=4*a1> p_o_p4>=4*a1>+2*a2>-3*a3> % Calculate i_o>> from definition 4*(1>>*dot(p_o_p4>,p_o_p4>)-p_o_p4>*p_o_p4>) express(i_s_o>>,a) % Calculate i_o>> using Autolev shortcut command i_s_o_alt>>=inertia(o) express(i_s_o_alt>>,a) % Verify that both approaches give the same result i_diff>>=i_s_o>>-i_s_o_alt>> % Now compute i_q>> using three different approaches: % 1. The definition of an inertia matrix % 2. The Autolev "inertia" command % 3. The equation relating the inertia dyadics for two points
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: % Approach 1 p_q_o>=3*a3> i_s_q1>>=1*(1>>*dot(p_q_p1>,p_q_p1>)-p_q_p1>*p_q_p1>)+& 2*(1>>*dot(p_q_p2>,p_q_p2>)-p_q_p2>*p_q_p2>)+& 3*(1>>*dot(p_q_p3>,p_q_p3>)-p_q_p3>*p_q_p3>)+& 4*(1>>*dot(p_q_p4>,p_q_p4>)-p_q_p4>*p_q_p4>) express(i_s_q1>>,a) % Approach 2 i_s_q2>>=inertia(q) express(i_s_q2>>,a) % Approach 3 i_o_q>>=(1+2+3+4)*(1>>*dot(p_q_o>,p_q_o>)-p_q_o>*p_q_o>) i_s_q3>>=i_s_o>>+i_o_q>> express(i_s_q3>>,a) i_diff1>>=i_s_q1>>-i_s_q2>> i_diff2>>=i_s_q2>>-i_s_q3>> Sheet1 Page 2 i_p1_o>>=1*(1>>*dot(p_o_p1>,p_o_p1>)-p_o_p1>*p_o_p1>) express(i_p1_o>>,a) i_p1_q>>=1*(1>>*dot(p_q_p1>,p_q_p1>)-p_q_p1>*p_q_p1>) express(i_p1_q>>,a) i_p1_parallel>>=1*(1>>*dot(p_q_o>,p_q_o>)-p_q_o>*p_q_o>) express(i_p1_parallel>>,a) i_p1_diff>>=i_p1_q>>-i_p1_o>> express(i_p1_diff>>,a)...
View Full Document

Page1 / 2

Ex7-2 - % Approach 1 p_q_o>=3*a3>

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online