EA-example

# EA-example - A Euclidean Algorithm example We now calculate...

This preview shows pages 1–2. Sign up to view the full content.

A Euclidean Algorithm example We now calculate gcd( z 6 , 9 z 5 + 8 z 4 + 2 z 3 + 7 z 2 + 6) = 1 over F 11 using the Euclidean Algorithm. At Step i we deﬁne q i ( z ), r i ( z ), s i ( z ), and t i ( z ) using r i - 2 ( z ) = q i ( z ) r i - 1 ( z ) + r i ( z ) s i ( z ) = s i - 2 ( z ) - q i ( z ) s i - 1 ( z ) t i ( z ) = t i - 2 ( z ) - q i ( z ) t i - 1 ( z ) . Step i q i ( z ) r i ( z ) s i ( z ) t i ( z ) - 1 - z 6 1 0 0 - 9 z 5 + 8 z 4 + 2 z 3 + 7 z 2 + 6 0 1 1 5 z + 9 6 z 4 + 2 z 3 + 3 z 2 + 3 z + 1 1 6 z + 2 2 7 z + 10 5 z 3 + 7 z + 7 4 z + 1 2 z 2 + 3 z + 3 3 10 z + 7 10z 2 + 5z + 7 4 z 2 + 6 z + 5 2z 3 + 10z + 3 4 6 z + 8 2 z + 6 9 z 3 + 9 z 2 + 10 z 4 + 6 z 3 + 8 z 2 + +3 z + 5 +4 z + 1 5 5 z + 4 5 10 z 4 + 7 z 3 + 8 z 2 + 5 z 5 + 7 z 4 + 4 z 3 + +2 z + 7 +3 z 2 + 10 6 7 z + 10 0 - - Thus 5 = (10 z 4 +7 z 3 +8 z 2 +2 z +7) z 6 +(5 z 5 +7 z 4 +4 z 3 +3 z 2 +10)(9 z 5 +8 z 4 +2 z 3 +7 z 2 +6) and, after dividing by 5 (that is, multiplying by 5 - 1 = 9), we have 1 = gcd( z 6 , 9 z 5 + 8 z 4 + 2 z 3

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 06/13/2011 for the course CRYPTO 101 taught by Professor Na during the Spring '11 term at Harding.

### Page1 / 2

EA-example - A Euclidean Algorithm example We now calculate...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online