{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# Intro - Chapter 1 Introduction Claude Shannon's 1948...

This preview shows pages 1–3. Sign up to view the full content.

Chapter 1 Introduction Claude Shannon’s 1948 paper “A Mathematical Theory of Communication” gave birth to the twin disciplines of information theory and coding theory. The basic goal is efficient and reliable communication in an uncooperative (and pos- sibly hostile) environment. To be efficient, the transfer of information must not require a prohibitive amount of time and effort. To be reliable, the received data stream must resemble the transmitted stream to within narrow tolerances. These two desires will always be at odds, and our fundamental problem is to reconcile them as best we can. At an early stage the mathematical study of such questions broke into the two broad areas. Information theory is the study of achievable bounds for com- munication and is largely probabilistic and analytic in nature. Coding theory then attempts to realize the promise of these bounds by models which are con- structed through mainly algebraic means. Shannon was primarily interested in the information theory. Shannon’s colleague Richard Hamming had been labor- ing on error-correction for early computers even before Shannon’s 1948 paper, and he made some of the first breakthroughs of coding theory. Although we shall discuss these areas as mathematical subjects, it must always be remembered that the primary motivation for such work comes from its practical engineering applications. Mathematical beauty can not be our sole gauge of worth. Here we shall concentrate on the algebra of coding theory, but we keep in mind the fundamental bounds of information theory and the practical desires of engineering. 1.1 Basics of communication Information passes from a source to a sink via a conduit or channel. In our view of communication we are allowed to choose exactly the way information is structured at the source and the way it is handled at the sink, but the behaviour of the channel is not in general under our control. The unreliable channel may take many forms. We may communicate through space, such as talking across 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 CHAPTER 1. INTRODUCTION a noisy room, or through time, such as writing a book to be read many years later. The uncertainties of the channel, whatever it is, allow the possibility that the information will be damaged or distorted in passage. My conversation may be drowned out or my manuscript might weather. Of course in many situations you can ask me to repeat any information that you have not understood. This is possible if we are having a conversation (al- though not if you are reading my manuscript), but in any case this is not a particularly efficient use of time. (“What did you say?” “What?”) Instead to guarantee that the original information can be recovered from a version that is not too badly corrupted, we add redundancy to our message at the source. Lan- guages are sufficiently repetitive that we can recover from imperfect reception.
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern