M408m-Luecke_HW7 - romasko (qrr58) Assignment 7 luecke...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: romasko (qrr58) Assignment 7 luecke (55035) 1 This print-out should have 18 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. 001 10.0 points Find an equation for the tangent plane to the graph of f ( x, y ) = radicalbig 3 + x 2 3 y 2 at the point P (2 , 1 , f (2 , 1)). 1. 2 x 3 y 2 z + 3 = 0 correct 2. 3 x 2 y + 2 z 3 = 0 3. 2 x + 3 y 2 z 3 = 0 4. 3 x + 2 y 2 z 5 = 0 5. 2 x 3 y + 2 z 5 = 0 6. 3 x 2 y + 2 z + 3 = 0 Explanation: The equation of the tangent plane to the graph of z = f ( x, y ) at the point P ( a, b, f ( a, b )) is given by z = f ( a, b ) + f x vextendsingle vextendsingle vextendsingle ( a, b ) ( x a ) + f y vextendsingle vextendsingle vextendsingle ( a, b ) ( y b ) . Now when f ( x, y ) = radicalbig 3 + x 2 3 y 2 , we see that f x = x radicalbig 3 + x 2 3 y 2 , while f y = 3 y radicalbig 3 + x 2 3 y 2 . Thus at P , f (2 , 1) = 2 , while f x vextendsingle vextendsingle vextendsingle (2 , 1) = 1 , f y vextendsingle vextendsingle vextendsingle (2 , 1) = 3 2 . So at P the tangent plane has equation z = 2 + ( x 2) 3 2 ( y 1) , which after rearrangement becomes 2 x 3 y 2 z + 3 = 0 . keywords: tangent plane, partial derivative, radical function, square root function, 002 10.0 points Find the linearization, L ( x, y ), of f ( x, y ) = x y at the point ( 2 , 4). 1. L ( x, y ) = 2 + 1 2 x + 2 y 2. L ( x, y ) = 2 1 2 x + 2 y 3. L ( x, y ) = 2 + 2 x + 1 2 y 4. L ( x, y ) = 2 + 2 x 1 2 y correct 5. L ( x, y ) = 4 + 1 2 x y 6. L ( x, y ) = 4 + x + 1 2 y Explanation: The linearization of f = f ( x, y ) at a point ( a, b ) is given by L ( x, y ) = f ( a, b )+( x a ) f x vextendsingle vextendsingle vextendsingle ( a,b ) +( y b ) f y vextendsingle vextendsingle vextendsingle ( a,b ) . But when f ( x, y ) = x y , f x = y , f y = x 2 y ; romasko (qrr58) Assignment 7 luecke (55035) 2 thus when ( a, b ) = ( 2 , 4), f x vextendsingle vextendsingle vextendsingle ( a,b ) = 2 , f y vextendsingle vextendsingle vextendsingle ( a,b ) = 1 2 , while f ( a, b ) = 4. Consequently, L ( x, y ) = 2 + 2 x 1 2 y . keywords: 003 10.0 points Find the differential of u = e 6 t sin 4 . 1. du = 6 e 6 t sin(4 ) dt + 4 e 6 t cos(4 ) d cor- rect 2. du = 4 e 6 t sin(4 ) dt + 4 e 6 t cos(4 ) d 3. du = 6 e 6 t sin(4 ) dt + 4 e 6 t sin(4 ) d 4. du = 4 e 6 t sin(4 ) dt + 4 e 4 t cos(4 ) d 5. du = 6 e 6 t sin(4 ) dt + 4 e 4 t cos(4 ) d Explanation: The differential of u is given by du = u t dt + u d ....
View Full Document

Page1 / 11

M408m-Luecke_HW7 - romasko (qrr58) Assignment 7 luecke...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online