M408m-Luecke_HW9

M408m-Luecke_HW9 - romasko (qrr58) – Assignment 9 –...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: romasko (qrr58) – Assignment 9 – luecke – (55035) 1 This print-out should have 18 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. 001 10.0 points Evaluate the integral I = integraldisplay 1 integraldisplay 2 1 (4 x + 3 x 2 y ) dydx . 1. I = 9 2 2. I = 3 3. I = 4 4. I = 5 2 5. I = 7 2 correct Explanation: The integral can be written in iterated form I = integraldisplay 1 parenleftBig integraldisplay 2 1 (4 x + 3 x 2 y ) dy parenrightBig dx . Now integraldisplay 2 1 (4 x + 3 x 2 y ) dy = bracketleftBig 4 xy + 3 2 x 2 y 2 bracketrightBig 2 1 = 4 x + 9 2 x 2 . But then I = integraldisplay 1 (4 x + 9 2 x 2 ) dx = bracketleftBig 2 x 2 + 3 2 x 3 bracketrightBig 1 . Consequently, I = 7 2 . keywords: definite integral, iterated integral, polynomial function, 002 10.0 points Evaluate the iterated integral I = integraldisplay 2 1 braceleftBig integraldisplay 2 1 ( x + y ) 2 dx bracerightBig dy . 1. I = ln 3 2 correct 2. I = 2 ln 3 2 3. I = 1 2 ln 3 2 4. I = ln 2 3 5. I = 1 2 ln 2 3 6. I = 2 ln 2 3 Explanation: Integrating the inner integral with respect to x keeping y fixed, we see that integraldisplay 2 1 ( x + y ) 2 dx = bracketleftBig- 1 x + y bracketrightBig 2 = braceleftBig 1 y- 1 2 + y bracerightBig . In this case I = integraldisplay 2 1 braceleftBig 1 y- 1 2 + y bracerightBig dy = bracketleftBig ln y- ln(2 + y ) bracketrightBig 2 1 . Consequently, I = ln parenleftBig (2)(1 + 2) (2 + 2) parenrightBig = ln 3 2 . 003 10.0 points Evaluate the iterated integral I = integraldisplay 5 1 braceleftBig integraldisplay 5 1 parenleftBig x y + y x parenrightBig dy bracerightBig dx . romasko (qrr58) – Assignment 9 – luecke – (55035) 2 1. I = 12 ln5 2. I = 5 ln24 3. I = 24ln 12 4. I = 12 ln24 5. I = 24ln 5 correct 6. I = 5 ln12 Explanation: Integrating with respect to y keeping x fixed, we see that integraldisplay 5 1 parenleftbigg x y + y x parenrightbigg dy = bracketleftbigg x ln y + y 2 2 x bracketrightbigg 5 1 = (ln 5) x + 12 parenleftbigg 1 x parenrightbigg . Thus I = integraldisplay 5 1 bracketleftbigg (ln5) x + 12 parenleftbigg 1 x parenrightbiggbracketrightbigg dx = bracketleftbiggparenleftbigg x 2 2 parenrightbigg ln5 + 12 ln x bracketrightbigg 5 1 . Consequently, I = 24 ln5 . 004 10.0 points Evaluate the iterated integral I = integraldisplay ln 6 parenleftBigg integraldisplay ln 5 e 2 x- y dx parenrightBigg dy . 1. I = 10 correct 2. I = 9 3. I = 8 4. I = 7 5. I = 6 Explanation: Integrating with respect to x with y fixed, we see that integraldisplay ln 5 e 2 x- y dx = 1 2 bracketleftBig e 2 x- y bracketrightBig ln 5 = 1 2 parenleftBig e 2 ln 5- y- e- y parenrightBig = parenleftBig 5 2- 1 2 parenrightBig e- y ....
View Full Document

This note was uploaded on 06/15/2011 for the course M 408M taught by Professor Gilbert during the Fall '07 term at University of Texas.

Page1 / 9

M408m-Luecke_HW9 - romasko (qrr58) – Assignment 9 –...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online