This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: 5. limit = 5 005 10.0 points ±ind the derivative oF f when f ( x ) = 4 tan xcot x . 1. f ′ ( x ) = 4 + 3 sin 2 x sin 2 x cos 2 x to (aqt73) – Section 3.4 – isaacson – (55826) 2 2. f ′ ( x ) = 43 cos x sin x cos x 3. f ′ ( x ) = 4 + 3 cos 2 x sin 2 x cos 2 x 4. f ′ ( x ) = 43 sin 2 x sin 2 x cos 2 x 5. f ′ ( x ) = 43 cos 2 x sin 2 x cos 2 x 6. f ′ ( x ) = 4 + 3 cos x sin x cos x 006 10.0 points Find the derivative of f when f ( x ) = tan x (4 + 7 csc x ) . 1. f ′ ( x ) = sec 2 x (4 + 7 sin x ) 2. f ′ ( x ) = sec 2 x (4 sin x + 7) 3. f ′ ( x ) = sec 2 x (47 sin x ) 4. f ′ ( x ) = csc 2 x (4 + 7 sin x ) 5. f ′ ( x ) = csc 2 x (47 cos x ) 6. f ′ ( x ) = csc 2 x (4 sin x + 7)...
View
Full Document
 Spring '11
 Cathy
 Derivative, Sin, Mathematical analysis, Isaacson

Click to edit the document details