Section 3.5-problems

Section 3.5-problems - 2 2. f ′′ ( x ) = 3 cos 2 x + 2...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
to (aqt73) – Section 3.5 – isaacson – (55826) 1 This print-out should have 6 questions. Multiple-choice questions may continue on the next column or page – fnd all choices beFore answering. 001 10.0 points ±ind the derivative oF f ( x ) = 3 x sin 2 x + 3 2 cos 2 x . 1. f ( x ) = - 6 x cos 2 x 2. f ( x ) = 6 x cos 2 x 3. f ( x ) = 6 x cos 2 x - 6 sin 2 x 4. f ( x ) = 6 x cos 2 x + 6 sin 2 x 5. f ( x ) = 6 cos 2 x 002 10.0 points ±ind f ( x ) when f ( x ) = 1 x 2 - 6 x . 1. f ( x ) = x - 3 (6 x - x 2 ) 1 / 2 2. f ( x ) = x - 3 ( x 2 - 6 x ) 3 / 2 3. f ( x ) = 3 - x ( x 2 - 6 x ) 3 / 2 4. f ( x ) = 3 - x (6 x - x 2 ) 3 / 2 5. f ( x ) = 3 - x ( x 2 - 6 x ) 1 / 2 6. f ( x ) = x - 3 (6 x - x 2 ) 3 / 2 003 10.0 points Determine f ( x ) when f ( x ) = 1 - x 1 + 2 x 2 . 1. f ( x ) = 1 - 2 x (1 + 2 x 2 ) 1 / 2 2. f ( x ) = - 1 - 2 x (1 + 2 x 2 ) 3 / 2 3. f ( x ) = 1 + 2 x (1 + 2 x 2 ) 1 / 2 4. f ( x ) = - 1 + 2 x (1 + 2 x 2 ) 1 / 2 5. f ( x ) = - 1 + 2 x (1 + 2 x 2 ) 3 / 2 6. f ( x ) = 1 + 2 x (1 + 2 x 2 ) 3 / 2 004 10.0 points ±ind f ( x ) when f ( x ) = p x 3 x 2 + 1 P 4 . 1. f ( x ) = x 3 (1 - 3 x ) (3 x 2 + 1) 4 2. f ( x ) = 4(1 - 3 x 2 ) (3 x 2 + 1) 4 3. f ( x ) = 4 x 3 (1 - 3 x ) (3 x 2 + 1) 4 4. f ( x ) = x 3 (1 - 3 x 2 ) (3 x 2 + 1) 5 5. f ( x ) = 4(1 - 3 x 2 ) (3 x 2 + 1) 5 6. f ( x ) = 4 x 3 (1 - 3 x 2 ) (3 x 2 + 1) 5 005 10.0 points Determine f ′′ ( x ) when f ( x ) = 3 sin 2 x + 2 cos x . 1. f ′′ ( x ) = 6 sin 2 x - 2 cos x
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
to (aqt73) – Section 3.5 – isaacson – (55826)
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2 2. f ′′ ( x ) = 3 cos 2 x + 2 sin x 3. f ′′ ( x ) = 3 sin 2 x + 2 sin x 4. f ′′ ( x ) = 3 cos 2 x-2 cos x 5. f ′′ ( x ) = 6 cos 2 x + 2 cos x 6. f ′′ ( x ) = 6 cos 2 x-2 cos x 006 10.0 points Find the second derivative, f ′′ , of f when f ( x ) = x sin( x 2 )-4 x 2 . 1. f ′′ ( x ) =-4 x 3 cos( x 2 ) + 6 x sin( x 2 )-8 2. f ′′ ( x ) =-4 x 3 sin( x 2 )-6 x cos( x 2 )-8 3. f ′′ ( x ) = 4 x 3 sin( x 2 ) + 6 x cos( x 2 ) + 4 4. f ′′ ( x ) =-4 x 3 sin( x 2 ) + 6 x cos( x 2 )-8 5. f ′′ ( x ) =-4 x 3 cos( x 2 )-6 x sin( x 2 )-8 6. f ′′ ( x ) = 4 x 3 cos( x 2 ) + 6 x sin( x 2 ) + 4...
View Full Document

This note was uploaded on 06/14/2011 for the course MATH 305G taught by Professor Cathy during the Spring '11 term at University of Texas.

Page1 / 2

Section 3.5-problems - 2 2. f ′′ ( x ) = 3 cos 2 x + 2...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online