# binomialkey - McCombs Math 381 The Binomial Theorem and...

This preview shows pages 1–3. Sign up to view the full content.

McCombs Math 381 The Binomial Theorem and Pascal's Triangle The Binomial Theorem: Let x and y be variables, and let n be a nonnegative integer. x + y ( ) n = n 0 ! " # \$ % x n + n 1 ! " # \$ % x n 1 y + n 2 ! " # \$ % x n 2 y 2 + ((( + n n 1 ! " # \$ % xy n 1 + n n ! " # \$ % y n = n j ! " # \$ % j = 0 n ) x n j y j Interesting Facts: 1. For n ! 0 , n k ! " # \$ % k = 0 n = 2 n 2. For n > 0 , ! 1 ( ) k n k " # \$ % k = 0 n ( = 0 3. For n ! 0 , 2 k n k ! " # \$ % k = 0 n = 3 n 4. Pascal's Identity: For n ! k > 0 , n + 1 k ! " # \$ % = n k 1 ! " # \$ % + n k ! " # \$ % 5. For n ! r ! 0 , j r ! " # \$ % j = r n = n + 1 r + 1 ! " # \$ % Pascal's Triangle: 0 0 ! " # \$ % 1 0 ! " # \$ % 1 1 ! " # \$ % 2 0 ! " # \$ % 2 1 ! " # \$ % 2 2 ! " # \$ % 3 0 ! " # \$ % 3 1 ! " # \$ % 3 2 ! " # \$ % 3 3 ! " # \$ % 4 0 ! " # \$ % 4 1 ! " # \$ % 4 2 ! " # \$ % 4 3 ! " # \$ % 4 4 ! " # \$ % . . . n 0 ! " # \$ % n 1 ! " # \$ % n 2 ! " # \$ % n 3 ! " # \$ % n 4 ! " # \$ % ’ ’ ’ ’ n n ( 1 ! " # \$ % n n ! " # \$ % &

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
McCombs Math 381 The Binomial Theorem and Pascal's Triangle Examples: 1. Use the binomial theorem to expand 2 a + b ( ) 4 . 2
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 06/16/2011 for the course MATH 381 taught by Professor Na during the Summer '11 term at University of North Carolina School of the Arts.

### Page1 / 4

binomialkey - McCombs Math 381 The Binomial Theorem and...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online