This preview shows page 1. Sign up to view the full content.
Unformatted text preview: and real continuous functions g i ( x ) on [0 , 1] and h i ( y ) on [0 , 2] for i = 1 , . . . , n so that  f ( x, y )n ² i =1 g i ( x ) h i ( y )  < ± for all ( x, y ) in the rectangle. 6. Given the equations xf ( u, v ) = 0 and yg ( u, v ) = 0 (a) give conditions that assure you can solve for ( x, y ) in terms of ( u, v ) and (b) similarly that you can solve for ( u, v ) in terms of ( x, y ). (c) Assuming these conditions are satisﬁed prove that ∂x ( u, v ) ∂u ∂u ( x, y ) ∂x = ∂y ( u, v ) ∂v ∂v ( x, y ) ∂y 1...
View
Full
Document
This note was uploaded on 06/19/2011 for the course MATH 600 taught by Professor Na during the Spring '11 term at University of North Carolina School of the Arts.
 Spring '11
 NA
 Sets

Click to edit the document details