Econometrics-I-2 - Applied Econometrics William Greene...

Info iconThis preview shows pages 1–14. Sign up to view the full content.

View Full Document Right Arrow Icon
Applied Econometrics William Greene Department of Economics Stern School of Business
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Applied Econometrics 2. Regression and Projection
Background image of page 2
Statistical Relationship Objective :  Characterize the stochastic  relationship between a variable and a set of  'related' variables  Context:   An inverse demand equation,  P =   α   +   β Q  +   γ Y, Y = income.  Q and P are two  obviously related random variables.  We are  interested in studying the relationship between P  and Q. By ‘relationship’ we mean (usually) covariation.   (Cause and effect is problematic.)
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Bivariate Distribution - Model for a Relationship Between Two Variables We might posit a bivariate distribution for Q and P,  f(Q,P)  How does variation in P arise?  With variation in Q, and  Random variation in its distribution.  There exists a conditional distribution f(P|Q) and a  conditional mean function, E[P|Q].  Variation in  P  arises  because of  Variation in the mean,  Variation around the mean,  (possibly) variation in a covariate, Y.
Background image of page 4
Implications Regression  is the conditional mean There is always a conditional mean It may not equal the structure implied by a theory What is the implication for least squares estimation? LS always estimates regressions LS does not necessarily estimate structures Structures may not be estimable – they may not be  identified .
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Conditional Moments The conditional mean function is the   regression  function . P  =  E[P|Q]  +  (P - E[P|Q])  =   E [P|Q] +  ε E[ ε |Q] = 0 = E[ ε ].  Proof:  (The Law of iterated expectations) Variance of the conditional random variable =  conditional variance, or the   scedastic function . A “trivial relationship” may be written as P = h(Q) +  ε where the random variable  ε =P-h(Q) has zero mean by  construction.  Looks like a regression “model” of sorts,  but h(Q) is only E[P|Q] for one specific function. An extension:  Can we carry  Y  as a parameter in the  bivariate distribution?  Examine  E [P|Q,Y]
Background image of page 6
Sample Data (Experiment)
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
50 Observations on P and Q Showing Variation of P Around E[P]
Background image of page 8
Variation Around E[P|Q] (Conditioning Reduces Variation)
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Means of P for Given Group Means of Q
Background image of page 10
Another Conditioning Variable E[P|Q,Y=1] E[P|Q,Y=2]
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Conditional Mean Functions No requirement that they be "linear" (we will  discuss what we mean bylinear) No restrictions on conditional variances
Background image of page 12
Projections and Regressions We explore the difference between the linear projection  and the conditional mean function y  =   α   +   β x  +   ε   where   ε    x,  E( ε |x)  =  0              Cov(x,y)  =  Cov(x,
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 14
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 06/20/2011 for the course ECON 803 taught by Professor Pp during the Spring '11 term at Thammasat University.

Page1 / 40

Econometrics-I-2 - Applied Econometrics William Greene...

This preview shows document pages 1 - 14. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online