{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Econometrics-I-14

# Econometrics-I-14 - Applied Econometrics William Greene...

This preview shows pages 1–6. Sign up to view the full content.

Applied Econometrics William Greene Department of Economics Stern School of Business

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Applied Econometrics 14. Nonlinear Regression and Nonlinear Least Squares
Nonlinear Regression What makes a regression model “nonlinear?” Nonlinear functional form?     Regression model: y i   =  f(  x i  ,  β  )  +   ε i Not necessarily:          y i  = exp( α ) +  β 2 *x i  +  ε i                                 β  = exp( α )                                y i   = exp( α )x i β exp( ε i )     is “loglinear” Models can be nonlinear in the functional form of the  relationship between y and x, and not be nonlinear for  purposes here. We will redefine “nonlinear” shortly, as we proceed.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Nonlinear Least Squares Least squares: Minimize wrt  β   ½   Σ i  [y i   - f( x i , β )] 2                                           =  ½   Σ i  e i 2 First order conditions:     ½ Σ i [y i - f( x i , β )] 2  ]/ ∂β             =  ½ Σ i (-2)[y i - f( x i , β )]  f( x i , β )/ ∂β           =  - Σ i  e i   x i 0   0 (familiar?) There is no explicit solution,  b  = f( data ) like LS. (Nonlinearity of the FOC defines nonlinear model)
Example: NIST How to solve this kind of set of equations:  Example,            y i   =   β 0 +  β 1x i β 2  +  ε i . ½ Σ i  e i 2 ]/ ∂β 0  =  Σ i  (-1) (y i  -  β 0 -  β 1x i β 2 )  1             =  0 ½ Σ i  e i 2 ]/ ∂β 1  =  Σ i  (-1) (y i  -  β 0 -  β 1 x i β 2 ) x i β 2           =  0 ½ Σ i  e i 2 ]/ ∂β 2  =  Σ i  (-1) (y i  -  β 0 -  β 1 x i β 2 β 1 x i β 2 lnx i  =  0 Nonlinear equations require a nonlinear solution.  We’ll  return to that problem shortly.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern