EE2720_HO5

EE2720_HO5 - EE 2720 Hmnéoulrfi 5{EE 2720 Bookobvz...

Info iconThis preview shows pages 1–21. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 14
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 16
Background image of page 17

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 18
Background image of page 19

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 20
Background image of page 21
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: EE 2720 Hmnéoulrfi 5 {EE 2720 . Bookobvz. Algebra. Mal, Swt'kkfffi MEELFOL - M i854.) 66:5ng Bade crfiqueA Q +wo valueéa algebra-t5 bgbflm CQlled [300(6ch £3953- v In i338) Clt—LUJE éhtcamow. QdQPfizd Boolean ablatier +0 amply 96 (Ln—cl day cribe 441e, {OBI/LGLVi-Ur a? CircuH-s NEH- W'iHl Vehgbi This chththI/L 1's mHed bwi’rclming algebra-t. - Smi-Pclnin EEVQ UL- 5w'11rclmin3 algebra H.651 candfflon 0.? [c bigml {5 répréEufiJ £75 55mm“: VOL." "Fifi: +35) 5UCI¢ 0L5 XJY qml +£23.58. vqrt'anHes c:qu Duly have {-wo Values) 0 0r 1' Theft”. CUTE +wo Pofiéibfe comfevL'I-l‘flmbjflm M 0i.ch negd—iva logic, ‘ —~ For +ng Po?i+i¢e logic) mg 0651391 0 +15: Hm Law 5118th and 1 +0 Hue HIGH figural. P 1:.— C2? __ For +Lbfl ngai+1iufl logic) LUE QBSI-gn .L 0 Ha: LOW bighil and 0 +0 Hue HMH Sl-anmL . Agioms ThE gigginme 0.? at mat+h€MQ1thfluf J5 b‘l’em are (L mimLmLJm 55-]- a? basic Afgllfliii‘GVl-fi Hind" are Qabumecl -[—n be. Jrrue) and 19W?” which on.” filler informfimz QEamL Hm? 535:- Jrem cow-L be alarmed- TL‘LE 19h}!- +wo qxfomf, mg gqu-Pclml'nfi algebra: g-Iu-fe Hlfllu+ a, variable X can +qke only one 019 +14?" VG. U35: Q“) X20 H"? Xfl j CA1!) x21 q? X790. A": ICU1E E:in earlier in, Hue Jemefifir CV6”? Emma? 04? H13, swab-Per") owe 019 {413 +hV'EE @0er basic digide devices [5 HM? flgflfi? 0"“ IWE‘PRV‘; (see Figure. 1—4“ of Page 7 of? +exf—J, A NOT 30d? 0"? [afieH—e‘r {s Q, daijl'fil chew-C8 whoge GU'I‘FU‘l‘ 513ml {5 Hui onosaL-f-fi Cor com-— FlemewD 019 [ inPuH- signal. This) means Had f Jrlme impch is, O +hen Has owlqu is} mad I‘- Hui imPu-I— [5 1 Hue»: H19 ou+Pu+ :3, 0. A Prime (’7 will be usecl +0 danofi "Hue ivyxier+erj5 $UM+IIDVL- This. 15 +5: 5Q +LLQ+ [- " Wk mble X AeneJres our: :‘nvmr’s ['ngngsgmlf Ham be~ J, I. X dent-1R5 H16 Value 0+0 0; agrad EM. Hze thug: 0U+FU+. We now bode I f . I I Nuke: X can readym "Xlarime' or “NUTX. As said flir‘l'flr in. Hue Learned-er (very Lae— ginning 0‘9 Hug §emes+erfl mun-Hwy" one 01? “Hui? +hr§e mob-F bqsfcfl CIE'VKCE’I; {'5 +118 W; Csee Figure H “FW 7 are {Mex-D. The 2~inpu+ HND§Q+€ iIS¢d€VliC€ whose DU‘I‘PU'IL is .1. I? Lad-La, {+5 {npufi titre IL- The Eunci'l‘l'on {:16 (L 2—mlpuf- AND god-e 1's Qiso CQHQJ 'W denafid Gama/H 'Flicqfiom (19+ 0). This '15 +0 5%; +11Q+Qn PrND gag-Fe LUi‘H’L inpufl Xde Y has (UL omi— Pu+ 5! Fatal whose “have [5 __ _ _ ‘ b3 ‘H’ifig {PI-3Uer behind y Y Th” ifiskown $:D_2=x-Y: XMD Y AND 3Q+€ @ we View have Jrhe mefi +hrea Qxfflms H4} 5+Q+€ +10)“. dflgg‘nH-ion of Hue AND UPSTQHOI’Z b5 It'erl'vadcf “Hm? Didi-Pd- Frocluced b5 +118 MD 343‘? Igflr emit Paasilale in, u+ combinaflfln- Again its me said EH' Hm verg beginmfig} OE Hue 5_81fne5+€r -H7_e lqb+ 91‘? Hug Hume Mafi- (:34: SEC d13I+ql euiceb is Hue. 2—9:. 1% OP (fire 5 (see Figure 1—1. on. Page7 a +ex+ - The 2_iQPU+ 0R gal-[13 [5 at ieuice whom). 0U+PU+ l-S l {{3 eH—her of? H-g. Jqpufi or MHz. are .1.- The Eunchom 019 0L 2~impu+ OR gmLe [is also CQHQJ lo {cal qddihgn dead—ed log a; Plus Sign C+). This L5, +0 mg H114- CLYL OR 8:141”: LUI"H'L fupuf-s X 0013 Y Lurks 0m. ou+f>u+ 51.5%] whafie VQIUE’ {5 XJFY- THE) '15 shown. be; H23 Ea'gure, befouj. §@——Z=X+Y : X 0121’ OR 3M9 we, my have Jrfiua [0(an +hr€e axl'oms +LLIL‘I‘ QR: -I—'n_e ciaflm+lofl a? +he 0R GPQFQHUH, log Healing +he gu+pu+ produced b5 Hue 0R gadre Ear each pessible I'LE’U'I' cflmbmfld'iflvl' (A 3’) L+L =L (A4) 0+0 : 0 (A 5') i443: 0+; :1. IMPORTANT: [n Hm above) + [mil'cM-es {gym fldeIiHmL aural g QTE+h€+fC culiH-{DVL . 50 .L+_L=J. {Lad H 15 Am; “4:2; C-Hu'g, [5 (I, Comon mi‘g-l-mke ~I—I'rLaL+ man)! 5+Uden+5 Ne-I-e: The odyaue god-ed axioms CAID—CAS) (Lad (Riv—'CASD CDMPlE‘I'elY deEl'I/Le bwt+chlfi3 Girléie‘ bri‘ AH n+her {facjrs can he PWVE‘C‘ UbIIVl-g +5859 udiflmb. * Pracedeme ‘The Precedence a? npmh'ms ['1 it [031}: EXPVE" 510% 15 +he EgHoLuimg: Precedence we mean +h€ Ord€r in which lie aperQJn'Oms acre Parfinrmecfl. i- P‘U‘evfihfi’bffi- 9~ CDMPIEVYIQVL+- 3 - Log‘gcfl moi-HPHCQHG (AND oPeFQ‘l'iml) 1%. [.031ch 0641+in CG opercfiim) NQE I IFL ‘H'LE PrflV'l-oué Inward" Qumberafae_ WHORE, have hi3 LLB!" PVECEJWE’ adagm'? Performed giV-H‘ For exam IE) eyFressims infi‘qusz—hebes mar? Fevfomfld 19W“) «gflllflwfl b5 COMFlemt-Z’nf— apem: lrfurLb) Eallnwed (95 flW'D operqh'anéuy £0”an by 0R OPETQHm/Lg. ' SidinLCJLEVL ~—q,( ELM +hfiomm5 5wi¥ching halgebm fieorems an: gl—cbtemewlfi known, +0 be dwqgg, We} Had- are U563 +0 mam/LIPUH‘LH ab!— gflbrmic ExFrEbsians +0 illflw él'mpler qnmlyfns W“ more egfiicien+ 53n+lmebig UEC1'r—cul'+5_ ' [ will now Presen+ 5wH—M migebrm +I'LEDF‘E‘2W25 an“: 9"”: variable) 5mi+chfn3 *ngfi'. F11, Worewls we DtJrhrEe mriqblab and 5mi+ch£wgwlgebrm +heorem5 “NH?— VL Ukrfmblab. New: The +h60mm5 Lui+h r1 Vqrfableb can be PTUVEJ- mH—h five .50 called fn.H‘E [dud-{0m fechm? we. WiHL mg Jrechnigue) you. {mt [brave +m+ fie Jrhflorfim f5 Jrrue Ear“ m cease where V1 :2 Char §>i5 Hep); Hum ygm Prove. +h¢+ {‘9 Hue +Aeorem i5 Jfrue for v1.3.3.0 +£1.97, {1L1}, edge 1Lrue for urt+iCivLclchrme 5+9?)- filpjfl: ARM-he?" L015 of? PFC-“Hing 0L +heoravn Duff‘er (Lag number 019 Vquflblfb [5 [:3 using a. 950 cicada M +ru+h Jrflnblflg Hera gm. shoulcl have a. gliul'l‘e numbnr :58 vmflqblgb. Definilvlnm A “HUHL Jrixble {also wilted Q G) Judah 0E combimHm'LED gapecigifi's Hue vulva of.) at 800% w‘duea a? He Variables in, ‘H‘lfl. expression- ‘ H9 am, By Pressim has n—VQIIQHES) and each VQF'U-‘Lble cam, 4'le 4-H? Eff-HUB Uri—3+LLC WMLEF a? dl'g-FEFEPL{' a? g&(U€5 (J? +I’LE ['5 i1 ZXZXZ‘K " 'JQJ‘Z :3 2. W m, Jrimes H THQY‘EEUV—EJ 0L +FU+PL 411.99% {1cm (Ln va—vcm'acble ex— Pressim mitt Ernie 2” rams)‘ (exqmflves wiH be sham [GLHVJ I he bwikhinfifiqlgebrag +heorem5 mow Evilow: ‘ swikhiflg -mlg£’.bm Heorfimg. w 1' Ha, (TL!) Mp): ClAenHHes) _ (“l-2’) X.0:0 C Wu“ Emmet/2+5) (T3) ><+><§=fii (T39 X-x=X C ldeMPUJFWY) CTHXXJIX C‘MD'U‘L‘“) (T5) x+xrzl (TS D X.XI:O CCamPlemfiufl); . Prone [SQ Jrhefirflm (Tl) or Fur-00.? o1? x+_1_:_{_. M1 We. (504.118 H60 COL-3&5: €0.58 XzO _ I . O+1:.L OLCCorciing +0 erom CF15) Case X=i J. . L+L=l QLCCDTAHLS +0 qxaam CA5) . Free? a? +heorem. CTS) or Frugal? Dig X+X’:_L. M: We have +wfi C6585 ' 013L516 ){2-"0. TLL‘EVL XII-7.1. Qcmrclfmg +9 qyl‘m @1)+ WHETEEOTE Xi—Xi—TO-I-l =1— (handing Jro fififlm (A50. ; ' Came XIIL. Than. )(rO according +0 OLKWWL CA2!) Therfifiore )(+)({:i+o=i acacia-Aing +0 mom @5“). Du "H13 may? 9? +Ir1€ PTWES Lag gDUV‘éflHgfi- M: Srlmplifiy Hue eypreasim (A.3’+D)-[— +1. Anhwei": LB‘i‘ X be X: - Then. +h£ Ewe“ egpmgsifim becom£5 X+l EULA according +0 +h€nrflm (1—2.) X+i:_L‘ Theregorej (A-B'+D)-E+l=i+ : Anamer: LE'I‘ X be XZA‘B'F'D- 772641 ‘H'LE gfvan fixpr‘esmn E8comes Y-qund amen-«€913 +9 +L1€DF€M X-szfl- Tfifrflfflrfl) (A-B +DD'CAv33’+D)’=0+ ' Swikhin “ELI ebr‘t}, +heor€m5 «RH-h “FWD M Theffi +H€DF€WL5 gal (T6)X+Y:Y+)( 0—64“) X.Y-_-Y_X (Commufifiw4y) CTTDCX+O+2= x+<Y+29 (TT') (x-r)-z=x-<Y-2)(1m; 3: (T8) X 'Y +X'33X'CY+Z> (7’3!) (HO-(m2) = X+Y- REE-firm)?“ CW) X +)(-Y IX (T?!) X'OH‘YDZX (Covering). (T10) x-Y-HW’; x (TLU') (HQ-0W5 3% (Combinima). (“9 X-Y+x‘-2+\{-2:x-Y+xfz I (Tii'XXJrYJ-(X’Jr 2M Y+23 =C><+Y3 'CX + 7’3) GavififiLrLs-us) )(n(+)(\{’: X CYi—YI) QCCDerg +0 ._: X._L acceding +065 :; X QCCUrAing +1361!) M'- We will PTWE’, ewqfion CL) using 0L Jrer am. On. +112 (EH bide. DE mafia) wwill UL“ P055IIHE combing-Herb a? VELIUEB 0-? *H'Lfi VQflQHéS XJY 061-3 2-. The VLUmloer‘ ogdiggev‘efi comb-radians: 03? valves 0% +Lbe. firiwblfib .15 23:85 Crawl.” +1111+ we image, +1—Lree variables here). Thflbe Cfimbimmfions will bfl, 960 Wu LL 1].]. raprfigerzh'mg Hue dem’ml values 031,3 2,3qu 3,637. In. Hue nex+ we columns a]? Ht?- JrruHL able; we compfie X'Y Gaul Y-Z—For Batch combimim of; values 05 XJY and 2. Final" N; we. cam.qu (300.2. (mg X_<Y,Z_)_ TL“? +WJr1erfi-Hfl is 5Lown an Hue nemL Page. Go +0 nex+ Page—4» Looking wk- -H1,e, +1.49 columns a? 4-H: +FU‘H'L Mia; we comma gm} 00.0.2 mixfwz) are figural gar all PassiHfi combinaA-ione. 0%“ UuJuEE: G19 Hgfi Wf' “IQ-NEE? )(JY {Luci Z“. ThevefnreJ-l'he cflymlublfifl 15! +hrd' ej/UQ'HWL (L) is undid and +hfivrfim<T7j '3 Pro we v1. NOE: from, Cay; prove Haeurfim (T7) in 0?. SI‘MHQF UJCLB {Janna q, {um-Hm fickle. Nfl‘l‘e = The. odoove erv and +frwfle wrque flair)? rams com. be. fiouvui Inn, +Lue +61%)" C‘l’CLHE Zf~2 “L Page 1W 019 +€X+>. One more +heoram mfl- FrasemLecl in. Hue +12% i5 +heor€m 6‘11”) Pagan-Rd below cm”) MHz—m @v Nfi‘l'fi 1TH£OT€WLCFLLID i5 VLO’I" rgtqig/CI +0” (m) m cm“). X JumL called Mr Cm _ - Preefi 0E Jrlmaorflm 011”) 03” FWD”? Giro- X‘ Y ’+Y : X” Pruogi I X'YI-I-YZY-l—X-Y according +9 (TO I GHQ (WHY!) GLCCOTding +0LT8") : C YHO ' .1 Quack-c11ng +0 CTS) :aY'HLE accorhng +6 C11!) : >0er qccowlmg +0 CT‘E) An0+hflr Frau? a]? @111”) 1.5 using {Eb JrruHL JrLLHE is 5mm below l—Whima {1-er Hm: 101,ng JFW'D CDIUWL’LE’ 019 H143 Wfib Jrfiitjolfl)uj see, Hm} >1+YI+Y CLlrLcl. )H—Y are <3 um {30V FLU {3:355ng combimQJriGVLb {:fi values 0 ‘an, V'QWLDLHES )(Cvlcl Theregore) +heorem (TU-H) Lrwl r15 ~I~WE . Prong OH‘O'(X+Z):X-(X+Z)+Y*CX+3) queer“; +0 (T8) : ¥.X+X.Z+Y.X+Y.2 afloat-HZ? +0 CTS)! .-: x +)(-Z~+Y-)(+Y-2 accordljg +0 65) = X + x-2+x Y +Y-E mam-4mg Mn? : x.l+x,2. +x-Y +Y-Z- qccorclmg +001 : )<*C1+2 +Y)+ Y- 2 n u cw; : X-_L+\{.Z— u. :1 (T2) IX+Y-2 H “CI-f) " PTDD a? +heUr‘em (T3! or :X Prong? ) X .CX+Y): x-X +X. Y vacant-ding 41: (T8) x+x Y H 1* (1‘39 : x_l+x_Y 11 ll (Til) : x.CL+\O 11 1' CTS) : X‘i I] H : X 1I ll CTi’) * Pros-1E 019 +hcorem T11. or X- +x’2+Y-2~=X Y+X"2 Prfio Y'Y+X-2+Y Z=X'Y+XIZ-+i Y-E Macrer +0 CTiI) :. x-Y+x’-2+C><+)<’J ‘1“2‘ “ “’ (TS) :X'Y+X’2+X-Y-2+x’-Y'E H ” (Tc?) G0 +:: nei-l— Page —+ =><*Y+x Y 2 + )<fr Z HIE-1” 2 Manama [email protected] :X‘YJrXYZJFXI'ZJrX'ZLY i‘ " 6T6?) @ . 53E 1' H H (Ti 2 u +X‘YZ+><£E'J‘+X 31’ H W X I D H C > :X'Y'Ci+Z)-}'X'Z'CL+Y H (T2) -“ - . ,2 1 H I! n H CH) Nche : 3 [[13 “(105+ of +£7.12 Froafig) 01E Hm “figmmsi 3 [aim ‘HmEi remfimimg :2ng m, Jrcdae LLDWE fixer— dist Njfllrfil: Emrlmfir wg magi JrLb%% me wet 0? PW“ mug +h§orfimb with Einifi mambfir 0 variablfis lb Log 05mg +ru+h +mblfib- K OLIVECLAY showecl rate #340 e‘xqgm [1515‘ YER {LC'l-UGLHY Cit} 11/1, CREE 9!} mung Lam +0LH£5 i5 evalufiing Hm +EE0F€W {DHJremfiy-‘fi— Ear QM po5bltle combimem’Lb SHE JFLLB mkuflg a? +er variableb- Thib meant is called Perfiedr inclchrlm- You can amw Prove (LU +L’LE +wo~fiumci fireefiuflwifldalfi +heorm5 Fresana +Eri 51:: {Ear £5 +M5 m +86hfli$UE* - EDWH'cLLiVLg “€1,136er +heorem5 mm G0 +0 hex-F PGLBEH The n— variable Harem oHGi-U- @ (Ti?) X+X+'”+X :X C GENEFGLJiEed l'tJEmFG LTfiDX-Y'" 'X:X I I f 3' (T13)CX1'X2' X“):— Xijf-i—m‘l—X? CDeMovgm/Es flearm) CTLBID(XJ_+X2+*H+XHJ : yr x2. - ya. I (114:) LP (XLJXZ”'JXVL)+J 039$ r—‘cxfigxrigmfl‘wvfi C GmW-H Hm De. Hogaré’s +1.90%) cm) FCXDXZ, - u; xv.) = x1- Fam- -.a><n)+ X153“ ‘5 xix-w) C T15!) FC X1.) X2; - - 1) XVL) 5" C KL"? [3(9) X1)” Dxnfl ‘ LXL+ PC 'LJXEJ" 115%? *Thfl Hueortmg, ans) 001d Cuts") acre Hm ékamnm €¥PWian +hfiorfim5. M: A?! “’3 51M beffiré"; +he +heorem5 owl-Hz. 10.. Van—- Tmblea can {pa Proved Lui~HL Hue €mi+e EnJUmLion +ackni$ue euplmimeé on. Page 6 0? Jrhis handomk ' Pm“ 9 EUTEM TL? OF WD 0 I (Xi Exit}? Kn)! :(XLI'BXZJT‘I‘ ' +131; 19 Prnofi: l Fir-DUE. +Lb€flrflm @133 u5[ng +iue gimiJre induch'nn, flashmfiula. [fill girer Prove Hm} +l’u‘3 +hflorem lb +1rue_ AEDV— ELL-2. D1!" FFDVE +hq+ (erzj‘r: )(fi-x- Y2! Prove away. +15% C2) using 0:, ~l—rU~HL This 155wan. DVL Jrlue nefl— page. Loo}:in 04,“— +h€ 5m (EULA 6H7" Cfilumfl 0‘? H’bfi mm mm mag we brie Jr-hrd‘ 061M)” m XL’JFXQ! (LTE ecpuqi JEN £1.11 9mm combimwn'm/LB of. values of Jran ufltrfqblfig KL (Lad Y2. ThEFEJEam re, ear/ufiion i5 +rue omd +heorfiim (“r—L3) [news Jrrue Ear V1:-2+ Aébume new +l/LQ_+'+'PLEDFEWL frig) {c5 +we {9W “:5”; @ UV” fitbbLJmt-l Hub-{— X m (My? “Way: Mm; +---+>/g C3). We med, +0 ?roue +m+ {—he Werém 1'5 (SUM? +rua .Egr v1: iflrl 0r we weed +0 PFC” Haul-1‘ x (Xi-Sir 'YL' YL+QIZ le+¥2f+”'+ yr; +ya1i-J. Emir (mm-wu- ><L+Jz my xiv m- mi]?- __ I ~ ' yfijf-F YELHH Qccorifw +0 (1) I . : ylf+yg+...%y,; 1— X5+i accordmg +9 Tkfi ?mo£ 15 knew CDmFIE+E3 “SILVIA. JHUE +L1£orem 1E": *H‘UE $02“ a,“ N’Cd'dfib GE V'L. NEH? : ‘(uq Cam. prwe wearem Q13!) Ubl'm [email protected] giflifl in¢dc+lhn +ECI’WLliU6' Dr: H— qfig, (2L mewark PrflHewm. Nuke: Theorem @‘LLD CHI—e Generalized 133%?ij {-L-Leorem) 5:135 Hm}— giveim mug n~erri0Lb|€ 103;}; ExPrflbbimJ H—s complemeer can. be momma log Swat/Wing + mug - {Lle CDmPlfimflVE‘lfl-Vlfi CL” VG.“ FiqL‘Leb. some, QXQmPlfls EGHDW Bangle: Fina +173 Complemm-f- 919 C4f+B)'Cf Awmer: [CAgByCr] /: CAI+B)!+(C’)’: (Avfg‘Q-é’JD I A-Bf-l—C. Hare [ Ubed +heorem 0—H) align Exfiflle =' Find Jrhe complemevfi 019 @‘BI+C)’DI+E f , I Anew” [CA-B’Jt—cyD’JrE] =[(A-B’+cJ.D’_—{'E 3 :IE.B’+.C)’+<DI)’].E’ :[(A.B’)’-c’+D]-Ef: : [HWY] - C’+ D] *E’ = [C A’+B)-C’+D] *5! Here l 9450 USEcl +LLCD'FEWLQ‘HJLul'LchL afl-l-fiagéx. Exmfilfl: FimA 442:2 COWLPIEMEFL+ cg Af-B+A-BI Anbwer: mam-3")": (A’-B)’.ca-B’)’: .___ Ev)? BI] AI+ (Bx)? : (fl+B:)_(fii+ B) : :: A.A*‘+ A-B +B‘1A" + 3’13 : 0+4-BM’rB’1-0: :A-B+A’-B’. HEY? lq‘lso 1.153;! 5.01016: {xi-her {—heorems EXCEP+DEHM§QHJL Whmh are +heg? NUJCE: Cami +0 DeHor-gtugs War-3mg, (T413) UNA (Ti?!) + the; +HEDTEm5 51.1.41,le b-que: * T'rue comflameyd- 032m \0 Lead Produfi '15 Hue {oat-cal sum. 0? ‘HLE comlemcvj'fi- ' T‘rwfl Com?l€.mfi'¢+ 0]? Hue logical :3qu {5 14w ifigfcml ?rocluc+ a? Hue compleMEy—L-Lg ! ‘ ARCH???” “My +0 view +heoremg, G13) flmd @135) ‘5 fie Guflwin. ‘. - - whq+ +3irbeor€m Q'LZ) sigh 1'5 Jrhad- 0m n—a‘nPUHL AND 3M“? whose oufiwft— [5 com/Flamewred is swimlerfi' +0 Gum nainPLfi- GR audit wfioée inFqus are, compleme'm-h +35»- Thib is bhnwn, below [:5 Figure: 1. mad 2-4 {33w Y2. I 3. Xi >6 .5: -X r' Elwyzm X2. XE) .7: FI'SURE l 1" I I, Y: X1+X1+y5 Fig we :29; (Hm +5 e$uiml£m+ +1: E31). - Whm‘r +lmeur-am T160 .5155 E5 4411+ fl. n-[nFu+ 6|? ‘30-'11”— w'rwbe UU-l-PU i5 comPlemfler‘Bd i5 eguivalemt +0 as“ W—l'vbPfi AND gait: whose mm; we Cflmfl PiemenficL-Tht's is showh (9g ngureg 300th L1 gar 1a.:3 5L1ng on. 31%.}. Page X x x +44 I Y: (XLHQ #3) Figure 3 X1! X1 ; I r‘ f )(2 X: Y: YL‘XZ'y3 x! XVDO Figure 45 was is ewwm +0 933) 'Simfll'fllcflbhon a? In if: exPresbl'ovLj ufii'n Hm Presside +L1E‘DFEWL5. $ome examplag. of? simPlt'gt'CQHon sq? legit exprey Mama umhg {-he Frfi’bfin‘i'fici flfiorewz‘s Qolfaw. M 5mm zzaig-m—A’ Answer: Z=AI.B.c+A"..L fitter-cling +0 (Fir) : HEB-(2+0 :I H CD?) :A’f-J- H u (1‘2) 3" Ii H (Ti? M s.'mP1;£y i Z: EA+B’«C+D+E— Fl-CA-+B{C +CD+E-F_) J Answer: Le+ x be X:A+g‘ic MA M Y Be Y: D+E-F- Thaw. Z becomes Z=O(+Y)'CX+YJ) 2X acceding +0 @lé)« Therefore Z=X=A+B£C —-‘°—Em” L“ Simflifiv I @ Z: LBhDi-C‘: EU- C4-B+C) +CA.B+C) Anhwfiw I f f l _ C) Z=CB£D+c-E)-CA B+CD+CA 8+ Sob5+i+u+imai Z : pry—“U .HWV+ M; GLCCDT‘Aing +0 6—11”); nge Figfi ii €[email protected]flxj) I 50 Z: X+Y= Bf-D-i-Cf-Ef-l-(A'B-l-C). I No +9. H'LH- in. Hal's, example we [121r Y:@-Q+‘C) Fifi-her {"QCLVL order" +0 +hfii 30m Dig +heorEwL C111“). —_—-—N°+E: More eXmPlflfi Ufigimpli i-CGL‘I'EOV?‘ 0131051— eyPressmm using .Hw Pmbgmg hearewm mtgh+ bi REEEFEA in, Hie ney+ MnJGU-F ...
View Full Document

{[ snackBarMessage ]}

Page1 / 21

EE2720_HO5 - EE 2720 Hmnéoulrfi 5{EE 2720 Bookobvz...

This preview shows document pages 1 - 21. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online