Lab041415A

# Lab041415A - Lab Activities Multiple Regression Analysis...

This preview shows pages 1–5. Sign up to view the full content.

Lab Activities: Multiple Regression Analysis Suppose that as a stat guru you're asked to analyze what kinds of individual's characteri To investigate this, you decided to run a regression of earnings on education level, job exp Using your statistical tools from E370 with the U.S. data from the National Longitudinal  ID : Respondent's identifier EARNINGS : Current hourly earnings (\$) EDUC : Years of schooling (years) EXP : Total out-of-school work experience (years) MALE : Sex of respondent (1 if male, 0 if female) ID EARNINGS EDUC EXP MALE 1) Based on the resea 2302 30.44 17 17.58 1 73 57.69 18 11.17 1 2871 37.79 18 13.75 1 4022 18.49 12 21.58 1 941 27.00 13 21.83 1 3493 14.00 12 20.38 1 1186 38.81 16 13.02 1 997 22.18 12 19 1 2998 12.30 12 22.4 1 3) Use Excel to gener 1555 11.90 14 16.52 1 SUMMARY OUTPUT 1046 27.40 19 10.96 1 336 13.50 12 6.69 1 Regression Sta 11754 25.00 12 21.31 1 Multiple R 5375 10.00 12 20.04 1 R Square 482 81.82 19 16.88 1 Adjusted R Square 4245 15.38 14 15.04 1 Standard Error 12012 28.84 14 21.96 1 Observations 2463 9.61 15 20.75 1 3639 12.50 9 4.27 1 ANOVA 5390 15.93 14 23.27 1 1010 83.33 16 16.38 1 Regression 4900 18.75 12 21.12 1 Residual 2803 21.83 13 21.37 1 Total 1358 28.84 14 20.79 1 1911 16.71 12 22.08 1 5039 38.46 18 13.31 1 Intercept 1060 18.20 12 19.67 1 EDUC 5266 36.05 14 15.25 1 EXP 2904 25.76 19 11.71 1 MALE 3694 21.11 11 23.02 1 5203 23.60 13 14.19 1 4808 20.94 12 19.13 1 Independent variable Dependent variable:  2)  Before running re EARNINGS =  β 0  +  β 1 Expected  EARNINGS

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
772 21.00 12 21.5 1 2189 17.94 16 16.04 1 4722 10.83 12 21.92 1 1708 15.69 16 16.92 1 493 18.00 13 17.19 1 2143 12.50 12 14.31 1 393 25.00 13 18.38 1 11872 11.39 14 10.75 1 2159 23.25 16 19.48 1 3202 14.25 12 21.67 1 2386 24.61 15 20.56 1 769 17.75 12 18.1 1 1081 15.00 14 18.29 1 The point estimate fo 1527 12.00 12 21.37 1 2443 8.00 14 1.92 1 by about \$0.55 when 2725 8.00 14 18.15 1 2776 13.73 14 13.81 1 3979 48.07 19 10.33 1 6) Based upon the reg 1397 12.44 12 23.4 1 who had worked for  2658 8.00 12 8.9 1 (EARNINGS)' = -31.8 5323 13.50 10 15.62 1 1368 11.92 16 18.33 1 1677 25.50 12 18.54 1 7) Explain why we ne 3399 27.77 12 20.83 1 As more regressors  3745 13.00 16 17.56 1 has no additional ex 1867 20.10 12 18.62 1 discount the increas 4314 9.80 12 17.35 1 570 22.43 16 17.37 1 8) Interpret the Adju 2733 10.56 12 22.38 1 4156 16.36 9 21.83 1 1318 12.30 8 22.44 1 4056 23.07 16 18.44 1 3933 13.73 12 19.54 1 4566 58.60 12 19.63 1 4239 12.00 12 21.65 1 12009 10.00 12 20.62 1 4119 9.85 9 20.48 1 860 12.00 12 20.62 1 3607 13.50 11 21.02 1 2372 56.00 16 12.04 1 3971 32.69 19 8.23 1 5222 14.24 16 15.29 1 2713 20.00 12 19.27 1 4191 39.31 18 14.13 1 4) Using both the crit H 0 β = 0 (in words,  H 1 β  0 (in words, t  i) critical value meth ii)  p -value method: s Hence, we conclude  5) Interpret the inter which does not make Adjusted R Square s
2101 36.32 12 23.37 1 11973 21.63 12 23.13 1 12106 31.25 18 9.67 1 1486 9.16 12 21.77 1 4329 27.80 12 22.96 1 5637 17.95 12 21.12 1 1796 12.50 12 13.17 1 3861 16.15 16 14.46 1 12056 2.50 15 12.96 1 107 20.74 16 17.08 1 2584 12.00 12 15.23 1 481 47.00 19 18.94 1 3482 20.50 13 20.27 1 5439 33.76 16 17.4 1 193 42.59 16 21.29 1 11864 20.00 12 19.75 1 2896 71.22 18 16.77 1 2010 47.00 19 17.96 1 11793 25.00 12 17.75 1 3116 29.80 12 19 1 12124 4.46 12 19.29 1 357 26.04 16 19.85 1 3246 13.27 12 22.79 1 4767 18.00 17 17.12 1 2318 18.26 9 22.08 1 3994 9.25 12 13.88 1 5013 23.07 14 15.02 1 2774 21.90 14 22.12 1 5336 13.40 12 21.67 1 3675 15.00 16 13.13 1 4607 30.00 17 19.02 1 4904 12.54 12 20.65 1 18 113.96 13 22.08 1 1784 39.53 15 10.9 1 4129 14.21 14 15.56 1 2326 16.00 12 18.23 1 4311 11.36 15 17.9 1 711 14.63 12 21.92 1 4642 38.88 13 9.27 1 1859 16.61 12 20.23 1 1153 4.36 10 5.75 1 2209 14.00 13 19.23 1 1320 28.84 13 22.13 1 4448 32.05 16 11.79 1 797 25.90 12 19.37 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
269 86.53 16 21.46 1 800 18.18 14 19.52 1 4114 14.20 12 19.9 1 663 69.76 16 14.88 1 4020 8.12 12 7.25 1 4738 23.04 14 18.27 1 4278 19.46 12 23.31 1 2502 36.05 17 10 1 3192 15.00 12 20.38 1 722 14.10 11 20.88 1 2381 9.00 12 14.42 1 4242 21.63 12 20.52 1 4427 16.02 12 10.65 1 11994 13.67 12 18.54 1 3420 26.44 14 21.48 1 3374 18.96 12 19.06 1 2075 24.94 12 22.88 1 392 19.23 12 22.5 1 1889 13.75 13 16.54 1 1920 5.25 14 10.02 1 218 123.93 16 23.21 1 1746 39.81 19 15.5 1 3171 113.12 18 14.19 1 1560 11.42 12 13.88 1 2391 7.50 12 16.9 1 4781 9.85 9 15.79 1 2671 10.75 12 14.69 1 5500 16.82 14 17.42 1 12100 16.62 12 21.04 1 3844 24.03 14 20.44 1 2944 12.00 12 17.67 1 762 16.00 12 19.65 1 1919 17.30 14 18.29 1 1061 26.44 12 22.83 1 4013 11.16 12 17.27 1 12125 12.00 12 20.44 1 5252 15.50 12 17.27 1 2438 22.43 17 15.19
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern