1140 L5 - Lecture 5 Section A.5 Solving Equations Def An...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Lecture 5: Section A.5 Solving Equations Def. An equation in x is a statement that two algebraic expressions are equal. To solve an equation is to nd all values of x for which the equation is true. Such values of x are solutions (or roots, zeros ) of the equation. NOTE: If an equation has no solution, the solution set is empty , written as ; . ex. Solve the equation j x 1 j = 2 Linear Equations Def. A linear equation in one variable x is an equation of the form ax + b = 0 where a and b are real numbers with a 6 = 0. To solve a linear equation: 1. Remove all parenthesizes and simplify each side of the equation as much as possible. 2. Rewrite the equation by isolating the variable : variable terms on one side, numbers on the other. 3. Solve for the variable and check your solution. ex. Solve 6( x 1) + 4 = 3(7 x + 1) NOTE: A linear equation has exactly one solution. Solve a linear equation with fractions: multiply both sides by LCD to clear the fraction....
View Full Document

This note was uploaded on 07/08/2011 for the course MAC 1140 taught by Professor Williamson during the Spring '08 term at University of Florida.

Page1 / 13

1140 L5 - Lecture 5 Section A.5 Solving Equations Def An...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online