Cpm90fi - $${u_i^{n 1 u_i^n\over\Delta t c{u{i 1}^{n 1 u{i-1}^{n 1\over 2\Delta x = 0$$ have the conservative property Why or why not\item Use a

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
\documentstyle{article} \setlength{\textwidth}{6.6truein}\setlength{\oddsidemargin}{-.2truein} \setlength{\evensidemargin}{-.2truein}\setlength{\textheight}{9truein} \setlength{\topmargin}{-.4truein}\setlength{\headsep}{.2truein} \setlength{\footskip}{.3truein}\pagestyle{empty} \begin{document} \begin{center} {\bf EGN 5456 \hfill Intro to Computational Mechanics \hfill 4/28/90 }\\ {\it Open notes \hfill Leon Van Dommelen \hfill 11:00-1:00 pm } \end{center} \begin{enumerate} \item Does the backward Euler discretization
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: $${u_i^{n+1} - u_i^n\over \Delta t} + c {u_{i+1}^{n+1} - u_{i-1}^{n+1}\over 2 \Delta x} = 0$$ have the conservative property? Why or why not? \item Use a finite element formulation with linear shape functions to find discretized equations for $$-3 [(u_x)^3]_x = 0$$ $$u(-1) = 2$$ $$u_x(1) = - u(1)$$ \item Write the Beam \& Warming finite difference discretization for $$u_t + c u_x = 0$$ where $c$ is constant. Show stability. \end{enumerate} \end{document}...
View Full Document

This note was uploaded on 07/09/2011 for the course EGN 5456 taught by Professor Dommelen during the Spring '09 term at FSU.

Ask a homework question - tutors are online