cpm97x1

cpm97x1 - \documentstylecfw_article

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
\documentstyle{article} \setlength{\textwidth}{6.6truein}\setlength{\oddsidemargin}{-.2truein} \setlength{\evensidemargin}{-.2truein}\setlength{\textheight}{9truein} \setlength{\topmargin}{-.4truein}\setlength{\headsep}{.2truein} \setlength{\footskip}{.3truein}\pagestyle{empty} \begin{document} \begin{center} {\bf EGN 5456 \hfill Computational Mechanics \hfill 10/27/97}\\ {\it Open book \hfill Van Dommelen \hfill 1:05-2:20pm} \end{center} Show all reasoning and intermediate results leading to your answer. \begin{enumerate} \item Consider steady heat conduction in a plate with the elliptical boundary $x^2 + y^2/4 = 1$. The temperature on the elliptical boundary is $T=x$. Draw the isotherms $T=0, \pm 0.25, \pm 0.5, \pm 0.75$ inside the plate. Now assume that we increase the boundary temperature on the right side of the boundary, to $T=1+x$, and reduce it on the left side of the boundary, to $T=-1+x$. Sketch the isotherms $T= 0, \pm 0.5, \pm 1, \pm 1.5$
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 2

cpm97x1 - \documentstylecfw_article

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online