index(5)

# index(5) - Amount of material going through per unit time w...

This preview shows page 1. Sign up to view the full content.

Typical Steady State Control Volume Problem Chart (Not complete material coverage) Infow point i a · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Normally 4 variables are needed to fully determine it (since there is also an unknown velocity.) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2 known intensive variables (May get away with T only in some approximations, eg, when using saturated values as an approximation for compressed liquids.) a a a Tables, eg B.1.1-B.1.4; pv or Tv diagrams; v = v f + x ( v g - v f ) and similar for u and h . Ideal gas (applicable?) pv = RT (4 forms) Tables A5-A8 for u , h . Make do with the for- mulae for diferences in intensive variables listed below under “Device”? a Remaining intensive variables p,T,v, ( x, ) u,h . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Amount of material going through per unit time w = ˙ W/ ˙ m q = ˙ Q/ ˙ m ˙ m = ˙ V /v = A V /v A = π 4 D 2 a a a Device or Control Volume C1: Type of Device? Given that ˙ Q = 0? Do the given device characteristics add info about i a or e a ? C2: Mass: ∑ ˙ m i = ∑ ˙ m e Adds info about i a or e a ? Energy: ˙ Q + ∑ ˙ m i ( h i + 1 2 V 2 i ? + gZ i ? ) = ∑ ˙ m e ( h e + 1 2 V 2 e ? + gZ e ? ) + ˙ W Adds info about i a or e a ? C3: Device has ˙ W = 0? For ideal gasses: h 2-h 1 = i 2 1 C p d T ≈ C p ave ( T 2-T 1 ) For compressed liquids, by approximation , best at constant pressure: h 2-h 1 ≈ C ( p ) ave ( T 2-T 1 ) Exit point e a Same procedures as entrance point i a...
View Full Document

## This note was uploaded on 07/09/2011 for the course EGN 5456 taught by Professor Dommelen during the Spring '09 term at FSU.

Ask a homework question - tutors are online