mm1 - SixFundamentalIssuesof StatisticsinTheoretical&...

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
   
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Six Fundamental Issues of  Statistics in Theoretical &  Methodological Context
Background image of page 2
    1. Anecdotal accounts versus   systematic  evaluation of data. 2. Social construction of reality. 3. How data were collected. 4. Beware of lurking variables. 1.  Variation is everywhere. 6. Conclusions are always uncertain.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
     What you’re going to know by the end of  the fall semester:   Descriptive statistics: how to describe the  features of data you’ve collected  Basics of graphs & tables  Overview of sampling design  Exploratory data analysis: describe the features  of individual variables and the relationships  between variables
Background image of page 4
     Inferential statistics: how to draw  representative samples; & how to use  hypothesis tests, confidence intervals, and  significance tests to estimate unknown  characteristics of a population based on a  sample.  Basics of how to evaluate data &  research.
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    What you’re going to know by the end  of the spring semester:
Background image of page 6
    Exploratory Analysis   Exploring data to describe characteristics of  individual variables and relationships between  variables is a strength of statistical analysis.
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
                       OLS Regression  For every additional year of education,  monthly  earnings increase by $76 on average, holding  other variables constant.  Females earn $13 less than males per month on  average, holding other variables constant.  That is, how to estimate the mean value of an  outcome variable, based on the values of  explanatory variables & in the context of  hypothesis testing/inferential statistics.
Background image of page 8
    Regression with a Categorical      Dependent Variable   For every higher category of educational  attainment, the odds of voting Democrat instead of  Republican increase by a multiple of 1.31 on  average, holding other variables constant.  That is, using explanatory variables to estimate  the mean value of a categorical outcome variable  (such as Democrat vs. Republican), in the context  of hypothesis testing & inferential statistics.
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    But to get to those stages we’ll have to learn the  basics of statistics:   E.g., what are the types of variables? How are variables  defined & measured?   How should we collect data?  How do we compute means & standard deviations, & what  are their weaknesses?  The five-number summary: how do we compute it, & what  are its advantages?
Background image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 07/11/2011 for the course SYA 6305 taught by Professor Tardanico during the Fall '08 term at FIU.

Page1 / 219

mm1 - SixFundamentalIssuesof StatisticsinTheoretical&...

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online