lec1 - I.Introduction ,whatarethe regression...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
    I. Introduction: Simple Linear Regression
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
      As discussed last semester, what are the  basic differences  between correlation &  regression?  What vulnerabilities do correlation &  regression share in common?  What are the conceptual challenges  regarding causality?
Background image of page 2
      Linear regression is a statistical method for  examining how an outcome variable  y   depends on one or more explanatory  variables  x .  E.g., what is the relationship of the per  capita earnings of households to their  numbers of members & their members’ ages,  years of higher education, race-ethnicity,  gender & employment statuses?
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
     What is the relationship of the fertility  rates of countries to their levels of GDP  per capita, urbanization, education, & so  on?  Linear regression is used extensively in  the social, policy, & other sciences.
Background image of page 4
    Multiple regression—i.e. linear regression  with more than one explanatory variable —makes it possible to:   Combine many explanatory variables for  optimal understanding &/or prediction; &  Examine the unique contribution of each  explanatory variable, holding the levels of the  other variables constant.
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
      Hence, multiple regression enables us to  perform, in a setting of observational research,  a rough approximation to experimental  analysis.  Why, though, is  experimental  control better  than  statistical  control?  So, to some degree multiple regression  enables us to isolate the independent  relationships of particular explanatory variables  with an outcome variable.
Background image of page 6
    So, concerning the relationship of the per  capita earnings of households to their  numbers of members & their members’ ages,  years of education, race-ethnicity, gender &  employment statuses:   What is the independent effect of years of  education on per capita household earnings,  holding the other variables constant?
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
     Regression is  linear   because it’s  based on a linear (i.e. straight line)  equation.  E.g., for every one-year increase in a  family member’s higher education (an  explanatory variable), household per  capita earnings increase by $3127 on  average, holding the other variables  fixed.
Background image of page 8
     But such a statistical finding raises  questions: e.g., is a year of college  equivalent to a year of graduate school  with regard to household earnings?  We’ll see that multiple regression can  accommodate nonlinear as well as  linear y/x relationships.
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 07/11/2011 for the course SYA 6306 taught by Professor Tardanico during the Spring '09 term at FIU.

Page1 / 152

lec1 - I.Introduction ,whatarethe regression...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online